Ознакомительная версия.
Известно, что в кровотоке указанная перестройка тромбоцитов происходит до того, как они достигнут поврежденного участка сосуда, вследствие чего к сосуду они уже доставляются, будучи подготовлены к прилипанию и агрегации. Одновременно с этим в кровотоке интенсивно идет и другой процесс – склеивание тромбоцитов друг с другом, в результате чего образуются конгломераты, состоящие из 3–15–20 клеток, которые приклеиваются к первично адгезировавшим тромбоцитам. В результате гемостатическая пробка быстро увеличивается в объеме и через 1–3 мин полностью заполняет просвет кровоточащего сосуда.
Прилипание и агрегация тромбоцитов – сложная биологическая реакция, требующая участия ряда внешних и внутренних, исходящих из самих тромбоцитов, стимуляторов, энергетических затрат, глубокой перестройки свойств кровяных пластинок. Важнейшим плазменным кофактором адгезии тромбоцитов к коллагену является синтезируемый в эндотелии и циркулирующий в крови гликопротеин – фактор Виллебранда. Тромбоциты способны накапливать этот фактор в своих гранулах и выделять его в окружающую среду при активации (дегрануляция, «реакция освобождения»). Агрегация тромбоцитов реализуется рядом включающихся сопряженно и последовательно стимуляторов (агонистов): коллаген, АДФ, арахидоновая кислота и ее производные, адреналин, тромбин.
В первичном запуске агрегации ведущая роль принадлежит АДФ. Его первые небольшие количества поступают из поврежденной сосудистой стенки и эритроцитов, мацерирующихся в зоне гемостаза. Затем АДФ выделяют в окружающую среду сами первично адгезировавшие и активированные тромбоциты в процессе присущей этим клеткам «реакции освобождения». В результате вышеописанных процессов концентрация АДФ в зоне гемостаза быстро нарастает. И спустя уже 20 с после перерезки артериолы около 50% всего имеющегося в тромбоцитах АТФ превращается в АДФ.
Сопряженно с АДФ из тромбоцитов выделяются содержащиеся в тех же гранулах другие стимуляторы агрегации – адреналин, серотонин. Однако особое значение имеет то, что в лабилизированных тромбоцитах активируются мембранные фосфолипазы, циклооксигеназа и тромбоксан-синтетеза, в результате чего образуются мощные стимуляторы агрегации – арахидоновая кислота и ее производные, в том числе наиболее активный агрегант этой группы – тромбоксан А2.
Аналогичным образом в эндотелии и гладкомышечных клетках стенок кровеносных сосудов активируется образование эндоперекисей простагландинов, но на последнем этапе под влиянием фермента простациклин-синтетазы в них образуется и выделяется в кровь мощный ингибитор агрегации тромбоцитов и вазодилататор – простациклин.
Таким образом, система простагландинов – один из важных регуляторов агрегационной функции тромбоцитов и их взаимодействия с сосудистой стенкой.
Для клиницистов знакомство с этими механизмами имеет существенное значение, поскольку с нарушением образования аденилатциклазы или с ее блокадой связан ряд наследственных («аспириноподобный синдром») и приобретенных, в том числе лекарственных, тромбоцитопатий. Препараты, ингибирующие эту систему, используются в антитромботической терапии, хотя целесообразность применения некоторых из них весьма проблематична, поскольку они в равной степени подавляют как агрегацию тромбоцитов, так и образование в эндотелии антитромботического агента – простациклина.
Тромбин – чрезвычайно сильный агрегирующий агент, завершающий «реакцию освобождения» внутрипластиночных факторов, укрепление фибрином тромбоцитарной пробки. Важно, что агрегацию он вызывает в дозах, значительно меньше тех, какие необходимы для свертывания крови. Формирование тромбоцитарной пробки опережает свертывание, хотя отдельные волокна фибрина все же обнаруживаются в ней и на ранних этапах агрегации.
Взаимодействуя с мембранным гликопротеином V, тромбин формирует на тромбоцитах рецепторы к активированным плазменным факторам свертывания X и V. Закрепляясь на тромбоците, фактор Ха получает защиту от антикоагулянтного действия антитромбина III и гепарина, что играет важную роль в реализации локального свертывания крови в зоне тромбирования сосудов.
В механизме тромбоцитарного гемостаза важным и вместе с тем очень уязвимым звеном является «реакция освобождения» гранул и содержащихся в них агентов, необходимых как для осуществления гемостаза, так и для репарации поврежденной сосудистой стенки. Без «реакции освобождения» процесс агрегации обрывается на начальном этапе и не завершается формированием полноценной тромбоцитарной пробки. Это нарушение часто наблюдается как при наследственных, так и при вторичных (симптоматических) тромбоцитопатиях.
Схема 1 Агрегация тромбоцитов
«Реакция освобождения» реализуется в 3 этапа:
1) подготовительный, характеризующийся смещением содержащихся в тромбоците плотных гранул в центр клетки и расширением проникающих вглубь тромбоцита каналов;
2) ранняя «реакция освобождения» с выходом из клетки (секрецией) гранул I и II типа;
3) поздняя «реакция освобождения» – секреция гранул III и IV типа.
В тромбоцитах различают 4 типа секретируемых гранул высокой электронно-оптической плотности.
I тип – гранулы, с которыми секретируются важные для гемостаза небелковые компоненты: АТФ, АДФ, серотонин, пирофосфат, адреналин, кальций.
II тип – гранулы, содержащие низкомолекулярные белки, фактор Виллебранда и фибриноген; наиболее важны в этих гранулах 2 разновидности пластиночного антигепаринового фактора (фактор 4 тромбоцитов, ПФ-4), β-тромбоглобулин, ростовой (митогенный) фактор, стимулирующий синтез ДНК и деление клеток, фактор Виллебранда.
III и IV тип гранул содержат ферменты, в основном кислые гидролазы; они секретируются позже и только под влиянием тромбина и коллагена, но не АДФ и адреналина.
Агрегация тромбоцитов, особенно под влиянием АДФ, адреналина и тромбоксана, нуждается в ряде небелковых (ионы кальция и магния, фосфолипидный фактор) и белковых плазменных кофакторов. К последним относятся альбумин, термостабильный и термолабильный белковые кофакторы, фибриноген, некоторые компоненты глобулиновой фракции плазмы. Фибриноген необходим для агрегации в очень небольших количествах (немногим более 0,02 г/л), в связи с чем нарушения агрегации, связанные собственно с гипофибриногенемией, встречаются крайне редко.
Все эти белки образуют вокруг тромбоцитов «плазматическую атмосферу», необходимую для полноценного функционирования этих клеток.
Вместе с тем продукты ферментного расщепления белков (в частности, обусловленного плазмином расщепления фибриногена и фибрина) резко ингибируют агрегацию тромбоцитов.
Таким же свойством обладают некоторые парапротеины и криоглобулины.
Взаимодействие стимуляторов агрегации и ряда их плазменных кофакторов с кровяными пластинками происходит на мембране этих клеток – на предсуществующих или «открывающихся» в процессе активации рецепторах, в большинстве принадлежащих гликопротеинам (ГП). Многие виды патологии тромбоцитов, в том числе такие важные их формы, как тромбастения Гланцмана, макроцитарная тромбоцитодистрофия Бернара – Сулье, синдром Мей – Хегглина, обусловлены отсутствием или аномалией мембранных гликопротеиновых рецепторов.
Гликопротеин I состоит из двух дисульфидносвязанных субъединиц – 1а или гликокалицина (молекулярная масса 130 000–160 000) и b (молекулярная масса 22 000). Первая является рецептором фактора Виллебранда; она необходима для прилипания тромбоцитов к субэндотелию (коллагену) и отчасти – для тромбинагрегации. Ее содержание в мембране тромбоцитов резко снижено при аномалии Бернара – Сулье.
Гликопротеин II состоит из субъединиц IIа (молекулярная масса 110 000–130 000) и lib (молекулярная масса 23 000), необходим для всех видов агрегации тромбоцитов. Содержание резко снижено при тромбастении Гланцмана.
Гликопротеин III, возможно, является вариантной формой гликопротеина II (молекулярная масса 114 000). Содержание в мембране снижено при тромбастении Гланцмана.
Гликопротеин IV (молекулярная масса 85 000–100 000) отличается от других гликопротеинов резистентностью к трипсину и химотрипсину. Функция нуждается в уточнении.
Гликопротеин V (молекулярная масса 68 000–89 000) является субстратом тромбина, которым селективно гидролизуется. Важен для реализации тромбин-агрегации.
Тромбоцитарный гемостаз сам по себе вполне достаточен для полной остановки кровотечения в зоне микроциркуляции. Однако в более крупных сосудах с высоким кровяным давлением тромбоцитарная пробка, не укрепленная фибрином (без последующего свертывания крови), в лучшем случае лишь временно останавливает кровотечение, а затем часто не удерживается на месте, что ведет к его возобновлению.
Влияние тромбоцитов на свертывание крови и фибринолиз. В тромбоцитах найдено много агентов, участвующих в свертывании крови. Однако многие из этих веществ являются не собственно тромбоцитарными факторами, а лишь адсорбированными тромбоцитами плазменными факторами свертывания.
Ознакомительная версия.