Сальвиати. Полагаю, что мы куда больше рискуем создать школу, лишенную творческого выражения, где функции ученика будут запоминать даты, формулы и списки слов, а затем выплевывать их на стандартных экзаменах, готовясь стать «строителем светлого будущего».
Симплицио. Но послушай, ведь должен быть какой-то минимум математических фактов, которые должен знать любой образованный человек!
Сальвиати. Да, и самый главный из этих фактов — то, что математикой люди занимаются для собственного удовольствия! Согласен, неплохо знать некоторые основные факты о числах и геометрических фигурах. Но это не придет от зубрежки, повторений, лекций и упражнений. Ты можешь конечно, заучить их. Мы видим миллионы взрослых людей, повторяющих «минус b плюс-минус корень из b в квадрате минус 4ac, деленное на 2a», и все это без малейшего понятия, что это значит. А причина в том, что им так и не дали возможности открыть или изобрести что-то самим. Они никогда не решали увлекательной задачи, не бились над ней, не искали способ решения. Им никто не рассказал об истории отношений человека и чисел — ни о вавилонских табличках с задачами, ни о папирусе Ахмеса, ни о Liber abaci, ни об Ars magna
[13]
. И — самое главное — у них не было возможности задаться вопросом, ибо на все их вопросы были даны ответы еще до того, как они их могли задать.
Симплицио. Но у нас нет столько времени, чтобы каждый ученик изобрел себе математику! У человечества ушли века на теорему Пифагора — как же ты хочешь, чтобы обычный школьник ее сам открыл?
Сальвиати. Я этого не хочу. Позволь мне ясно сказать: я сожалею о полном отсутствии в математической программе искусства и открытия, истории и философии, контекста и перспективы. Я не хочу сказать, что нотация, техника и накопление знаний не нужны. Нужны, конечно. У нас должно быть и то, и это. Если я возражаю против того, что маятник слишком далеко отклонился в одну сторону, это не значит, что я за то, чтобы он отклонился до конца в другую. Люди на самом деле лучше учатся, когда результат получается из процесса. Настоящая любовь к стихам приходит не от запоминания сотен поэм, а от написания собственных стихов.
Симплицио. Да, но прежде, чем писать стихи, ты должен выучить алфавит! Должно же все с чего-то начинаться. Сначала учатся ходить, потом — бегать.
Сальвиати. Да нет же, сначала тебе нужно знать, куда бежать. Дети учатся писать стихи и рассказы и одновременно письму и чтению. Рассказ шестилетнего — это чудесно, и орфографические и стилистические ошибки нисколько не умаляют этого чуда. Даже самые маленькие дети сочиняют песенки, хотя и не знают, в каком они размере и в какой тональности.
Симплицио. Но разве математика не отличается от музыки? Разве математика — не система символов, язык сам по себе, который надо выучить прежде, чем говорить на нем?
Сальвиати. Нет, это совершенно не так. Математика — не язык, а приключение. Разве музыканты «говорят на другом языке», сокращая свои идеи до маленьких черных нот? Если бы и так — это все равно не мешает карапузу и его песенке. Да, определенная система математической записи образовалась за века, но она не является самоважной. Математика частенько делается с друзьями за чашкой кофе на салфетках. Математика — это идеи, а идеи превосходят символы, которыми они записываются. Гаусс однажды заметил: «Нам нужны идеи, а не идиомы!»
Симплицио. Но разве не верно сказать, что одна из целей математического образования научить школьников думать логически точно, выработать «навыки математического мышления», как пишут в программе? Разве формулы и правила не оттачивают ума учеников?
Сальвиати. Нет, не «оттачивают». Если хочешь, система дает прямо противоположный эффект: она отупляет. Острота ума причиняется решением задач, а не заучиванием того, как это следует делать.
Симплицио. Ладно, согласен. А как быть с учениками, что идут в науку и в инженеры? Разве им не нужно обучение по стандартной программе? Не для того ли мы преподаем математику в школе?
Сальвиати. Много ли учеников станут писателями после уроков литературы? Мы учим литературе не для этого. Мы учим, чтобы просвещать, а не давать профтехобразование! Ведь самое важное умение и ученого, и инженера — умение мыслить творчески и независимо. А кому нужна эта дрессировка?!
Математическая программа
Состояние преподавания математике в школе так печально не только и не столько тем, что важное отсутствует — что на уроках математики не происходит математики, — но тем, что там присутствует: мешанина деструктивной дезинформации, называемая «программой». Давайте посмотрим, что противостоит нашим ученикам во имя математики, и какой это им наносит ущерб.
Самое удивительное в этой программе — это ее негибкость. Это особенно заметно по программе старших классов. От школы к школе, от города к городу, от штата к штату повторяются одни и те же темы, о них рассказывается одинаково и в одном и том же порядке. Вместо того, чтобы возмутиться этим Оруэлловским положением вещей, большинство людей просто принимают эту «стандартную программу» за самое математику.
Это тесно связано с тем, что я называю «мифом о лестнице» — идеей о том, что математику можно выстроить в последовательность «предметов», каждый из которых более «высокий», поднимающуюся до «высшей математики». Эта идея порождает гонку: некоторые студенты впереди, чьи-то родители переживают, что их ребенок «отстающий». И где финишная черта этой гонки, что ждет на ней? Печально, но гонка эта в никуда. В конце — вас обманут на ровно одно математическое образование, да еще так, что вы этого не заметите.
Настоящая математика не выпускается в консервах — в математике нет такой идеи, как алгебра за 9-й класс. Задачи ведут вас, куда ведут. Искусство — не гонка. Миф о лестнице это искаженный образ предмета математики, а учитель, следующий стандартной программе, лишь закрепляет этот миф, вместо того, чтобы показывать математику как нечто цельное. А в результате у нас получается математическая программа без исторической перспективы и тематической цельности, фрагментарный набор разнообразных тем и приемов, выстроенных в порядке легкости, с которой их можно свести к пошаговым инструкциям.
Вместо открытия и исследования у нас получаются правила и инструкции. Мы никогда не слышим, чтобы ученик говорил: «Мне захотелось узнать, есть ли смысл в возведении числа в отрицательную степень, и я обнаружил, что получится вполне осмысленно, если представить ее в виде обратного числа». Вместо того, учитель и учебники дают «правило отрицательной степени» как fait d’accompli без упоминания эстетики этого выбора или хотя бы того, что выбор был.
Вместо осмысленных задач, какие могли бы привести через неисследованную территорию обсуждения и спора к синтезу разнообразных идей, к чувству тематического единства и гармонии в математике, мы имеем столь безрадостные повторяющиеся упражнения на определенную технику, разъединенные друг с другом и отсоединенные от математики как целого, что ни у учителей, ни у учеников не возникает даже тени идеи, как такие вещи могли вообще сложиться.
Вместо естественного контекста задачи, где ученики могли бы сами выбрать слова для обозначения сущностей, выдается бесконечная череда немотивированных априорных «определений». Программа навязывает жаргон и классификацию ни для какой более цели, кроме возможности учителям проверять этот же жаргон на экзаменах. Ни один математик в мире не станет противопоставлять «смешанную дробь» 2 ½ «неправильной дроби» 5/2. Да они же равны! Это одно и то же число, их свойства одинаковы. Да кто хотя бы помнит эти слова после четвертого класса?
Куда легче, конечно, проверять знание бесцельных терминов, чем вдохновлять на создание прекрасного и поиск своего собственного смысла. Даже если мы и согласимся, что базовый математический вокабуляр необходим, — это не он. Пятиклассников учат говорить «ось абсцисс» и «ось ординат» вместо «осей x и y», но не дают им повода сказать такие слова, как «предположение» или «контрпример». Старшеклассников учат писать sec x, секанс, вместо обратной функции 1/cos x — «определению», обладающему такой же интеллектуальной силы, как сокращение «и т. п.». Это сокращение вышло из навигационных таблиц XV в. и по-прежнему остается в ходу (в то время как, например, версинус вышел из употребления) в наше время, когда точные навигационные вычисления более не проблема, по чистой исторической случайности. Так уроки математики забиваются бесполезной терминологией во имя терминологии.