My-library.info
Все категории

Ричард Фейнман - 7. Физика сплошных сред

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 7. Физика сплошных сред. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
7. Физика сплошных сред
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
138
Читать онлайн
Ричард Фейнман - 7. Физика сплошных сред

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

Ричард Фейнман - 7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

7. Физика сплошных сред читать онлайн бесплатно

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман

§ 6. Волны в металлах

Теорию, которая в этой главе развивалась для твердых мате­риалов, после очень небольшой модификации вполне можно применить и к хорошим проводникам типа металлов. На неко­торые из электронов в металлах не действует сила, привязы­вающая их к какому-то частному атому; это так называемые «свободные» электроны, ответственные за проводимость. Там есть и другие электроны, которые связаны в атомах, и изложен­ная выше теория непосредственно приложима именно к ним. Однако их влияние обычно «забивается» эффектами электронов проводимости. Поэтому сейчас мы рассмотрим только эффекты

свободных электронов.

Если на электрон не действует никакая восстанавливающая сила, но сопротивление его движению все же остается, то урав­нение движения электрона отличается от (32.1) только отсут­ствием члена w20х. Так что единственное, что нам нужно сделать,— это положить w20=0 во всей остальной части наших выводов. Но есть еще одно отличие. В диэлектриках мы должны различать среднее и локальное поля и вот почему: в изоляторе каждый из диполей занимает фиксированное положение по отношению к другим диполям. Но в металле из-за того, что электроны проводимости движутся и меняют свое место, поле, действующее на них, в среднем как раз равно среднему полю Е. Так что по­правка, которую мы сделали к формуле (32.5), не годится, т. е. применение формулы (32.28) для электронов проводимости недопустимо. Следовательно, выражение для показателя пре­ломления в металле должно выглядеть подобно выражению (32.27), в котором следует положить w0=0, именно:

Это только вклад от электронов проводимости, которые, как мы думаем, играют в металлах главную роль.

Но теперь мы даже знаем, какой нам взять величину g, ибо она связана с проводимостью металла. В гл. 43 (вып. 4) мы обсудили связь проводимости металлов с диффузией свобод­ных электронов в кристалле. Электроны движутся по ломаному пути от одного соударения до другого, а между этими толчками они летят свободно, за исключением ускорения из-за какого-то среднего электрического поля (фиг. 32.2).

Фиг. 32.2. Движение свободного электрона.

Там же, в гл. 43 (вып. 4), мы нашли, что средняя скорость дрейфа равна просто произведению ускорения на среднее время между соударе­ниями t. Ускорение равно qeE/m, так что

vдрейф=(qeE/m)t. (32.39)

В этой формуле поле Есчитается постоянным, так что скорость vдрейф тоже постоянна. Поскольку в среднем ускорение отсут­ствует, сила торможения равна приложенной силе. Мы опреде­лили g через силу торможения, равную gmv [см. (32.1)], или qeE, поэтому получается, что

g=1/t (32.40)

Несмотря на то что мы не можем с легкостью измерять непо­средственно t, можно определять его, измеряя проводимость металла. Экспериментально обнаружено, что электрическое поле Е порождает в металлах ток с плотностью j, пропорцио­нальной Е (для изотропного материала, конечно):

причем постоянная пропорциональности s называется прово­димостью.

В точности то же самое мы ожидаем из выражения (32.39),

если положить

j=Nqevдрейф,

тогда

Таким образом, t, а следовательно, и g могут быть связаны с наблюдаемой электрической проводимостью. Используя (32.40] и (32.41), можно переписать нашу формулу (32.38) для по­казателя преломления в виде

где

Это и есть известная формула для показателя преломления в металлах.

§ 7. Низкочастотное и высокочастотное приближения; глубина скин-слоя и плазменная частота

Наш результат для показателя преломления в металлах —формула (32.42) — предсказывает для распространения волн с разными частотами совершенно различные характеристики. Прежде всего давайте посмотрим, что получается при низких частотах. Если величина w достаточно мала, то (32.42) можно приближенно записать в виде

Возведением в квадрат можно проверить, что

таким образом, для низких частот

Вещественная и мнимая части n имеют одну и ту же величину. С такой большой мнимой частью n волны в металлах затухают очень быст­ро. В соответствии с выражением (32.36) амплитуда волны, идущей в направлении оси z, уменьшается как

Запишем это в виде

е-z/d, (32.47)

где d — это то расстояние, на котором амплитуда волны умень­шается в е=2,72 раза, т. е. приблизительно в 3 раза. Ампли­туда такой волны, как функция от z, показана на фиг. 32.3.

Фиг. 32.3. Амплитуда попе­речной электромагнитной вол­ны в металле как функция расстояния.

Поскольку электромагнитные волны проникают в глубь металла только на это расстояние, величина d называется глубиной скин-слоя и определяется выражением

Но что все-таки мы понимаем под «низкими» частотами? Взглянув на уравнение (32.42), мы видим, что его можно приб­лиженно заменить уравнением (32.44), только когда wt много меньше единицы и когда we0/s также много меньше единицы, т. е. наше низкочастотное приближение применимо при

w<<1/t

и

w<<s/e0. (32.49)

Давайте посмотрим, какие частоты соответствуют этому приближению для такого типичного металла, как медь. Для вычисления t воспользуемся уравнением (32.43), а для вычис­ления s/e0 — известными значениями s и e0. Справочник дает нам такие данные:

s=5,76·107 (ом·м)-1,

Атомный вес = 63,5 г,

Плотность = 8,9 г/см3,

Число Авогадро=6,02·1023.

Если мы предположим, что на каждый атом приходится по од­ному свободному электрону, то число электронов в кубическом метре будет равно

N=8,5·1028 м-3.

Используя далее

qe=1,6·10-19 кулон,

e0=8,85·10-12 ф/м,

m=9,11·10-31 кг,

получаем

t=2,4·10-14 сек,

1/t=4,l·1013 сек-1,

s/e0 = 6,5·1018 сек-1.

Таким образом, для частот, меньших чем приблизительно 1012 гц, медь будет иметь описанное нами «низкочастотное» пове­дение. (Это будут волны с длиной, большей 0,3 мм, т. е. очень короткие радиоволны!)

Для таких волн глубина скин-слоя равна

Для микроволн с частотой 10 000 Мгц (3-сантиметровые волны)

s=6,7·10-4 см,

т. е. волны проникают на очень малое расстояние.

Теперь вы видите, почему при изучении полостей (и волно­водов) нам нужно беспокоиться только о полях внутри полости, а не о волнах в металле или вне полости. Кроме того, мы видим, почему серебрение или золочение полости уменьшает потери в ней. Ведь потери происходят благодаря токам, которые ощу­тимы только в тонком слое, равном глубине скин-слоя.

Рассмотрим теперь показатель преломления в металле типа меди при высоких частотах. Для очень высоких частот сот много больше единицы, и уравнение (32.42) очень хорошо аппрокси­мируется следующим:

Для высокочастотных волн показатель преломления в метал­лах становится чисто вещественным и меньшим единицы! Это следует также из выражения (32.38), если пренебречь диссипативным членом с 7, что может быть сделано при очень боль­ших значениях w. Выражение (32.38) дает при этом

что, разумеется, эквивалентно уравнению (32.50). Раньше нам

уже встречалась величина (Nq2e/e0m)1/2, которую мы назвали

плазменной частотой (см. гл. 7, § 3, вып. 5);

Таким образом, (32.50) или (32.51) можно переписать в виде

Эта плазменная частота является своего рода «критической». Для w<wр показатель преломления металла имеет мнимую часть и происходит поглощение волн, но при w>>wp показатель становится вещественным, а металл — прозрачным. Вы знаете, конечно, что металлы в достаточной мере прозрачны для рент­геновских лучей. Но некоторые металлы прозрачны даже для ультрафиолета. В табл. 32.3 мы приводим для некоторых ме­таллов экспериментально наблюдаемые длины волн, при кото­рых эти металлы начинают становиться прозрачными. Во второй колонке дана вычисленная критическая длина волны lp =2pc/wp . Учитывая, что экспериментальная длина волны определена не очень хорошо, согласие с теорией следует приз­нать замечательным.


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


7. Физика сплошных сред отзывы

Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.