My-library.info
Все категории

Ричард Фейнман - 5b. Электричество и магнетизм

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 5b. Электричество и магнетизм. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
5b. Электричество и магнетизм
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
138
Читать онлайн
Ричард Фейнман - 5b. Электричество и магнетизм

Ричард Фейнман - 5b. Электричество и магнетизм краткое содержание

Ричард Фейнман - 5b. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

5b. Электричество и магнетизм читать онлайн бесплатно

5b. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман

Можно показать, как пользоваться законом Ампера, опреде­лив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндри­ческого сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля В идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле В имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7). Тогда можно легко взять линейный интеграл от B·ds. Он равен просто величине В, умноженной на длину окружности. Если радиус окружности равен r, то

Полный ток через петлю есть просто ток I в проводе, поэтому

или

(13.17)

Напряженность магнитного доля спадает обратно пропорцио­нально r, расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что В направлено перпендикулярно как I, так и r, имеем

(13.18)

Фиг. 13.7. Магнитное поле вне длинного провода с током I.

Фиг. 13.8. Магнитное поле длинного соленоида.

Мы выделили множитель 1/4pe0с2, потому что он часто по­является. Стоит запомнить, что он равен в точности 10-7 (в си­стеме единиц СИ), потому что уравнение вида (13.17) исполь­зуется для определения единицы тока, ампера. На расстоянии 1 м ток в 1a создает магнитное поле, равное 2·10-7 вебер/м2.

Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также про­ходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если про­вода параллельны, то каждый из них перпендикулярен полю В другого провода; тогда провода будут отталкиваться или при­тягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направле­ны,— они отталкиваются.

Возьмем другой пример, который тоже можно проанализи­ровать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8. Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравне­нию с полем внутри. Используя только этот факт и закон Ам­пера, можно найти величину поля внутри.

Поскольку поле остается внутри (и имеет нулевую дивер­генцию), его линии должны идти параллельно оси, как пока­зано на фиг. 13.8. Если это так, то мы можем использовать закон Ампера для прямоугольной «кривой» Г на рисунке. Эта кривая проходит расстояние L внутри соленоида, где поле, скажем, равно В0, затем идет под прямым углом к полю и возвращается назад по внеш­ней области, где полем можно пренебречь.

Фиг. 13.9. Магнитное поле вне соленоида.

Линей­ный интеграл от В вдоль этой кривой равен в точ­ности B0L, и это должно равняться 1/e0с2, умноженному на полный ток внутри Г, т. е. на NI (где N — число витков соленоида на длине L). Мы имеем

Или же, вводя n число витков на единицу длины соленоида (так что n=N/L), мы получаем

(13.19)

Что происходит с линиями В, когда они доходят до конца соленоида? По-видимому, они как-то расходятся и возвращают­ся в соленоид с другого конца (фиг. 13.9). В точности такое же поле наблюдается вне магнитной палочки. Ну а что же такое магнит? Наши уравнения говорят, что поле В возникает от присутствия токов. А мы знаем, что обычные железные бруски (не батареи и не генераторы) тоже создают магнитные поля. Вы могли бы ожидать, что в правой части (13.12) или (13.13) должны были бы быть другие члены, представляющие «плот­ность намагниченного железа» или какую-нибудь подобную величину. Но такого члена нет. Наша теория говорит, что магнитные эффекты железа возникают от каких-то внутренних токов, уже учтенных членом j.

Вещество устроено очень сложно, если рассматривать его с глубокой точки зрения; в этом мы уже убедились, когда пы­тались понять диэлектрики. Чтобы не прерывать нашего из­ложения, отложим подробное обсуждение внутреннего меха­низма магнитных материалов типа железа. Пока придется принять, что любой магнетизм возникает за счет токов и что в постоянном магните имеются постоянные внутренние токи. В случае железа эти токи создаются электронами, вращающи­мися вокруг собственных осей. Каждый электрон имеет такой спин, который соответствует крошечному циркулирующему току. Один электрон, конечно, не дает большого магнитного поля, но в обычном куске вещества содержатся миллиарды и миллиарды электронов. Обычно они вращаются любым образом, так что суммарный эффект исчезает. Удивительно то, что в немногих веществах, подобных железу, большая часть элек­тронов крутится вокруг осей, направленных в одну сторону,— у железа два электрона из каждого атома принимают участие в этом совместном движении. В магните имеется большое число электронов, вращающихся в одном направлении, и, как мы увидим, их суммарный эффект эквивалентен току, циркули­рующему по поверхности магнита. (Это очень похоже на то, что мы нашли в диэлектриках,— однородно поляризованный диэлектрик эквивалентен распределению зарядов на его по­верхности.) Поэтому не случайно, что магнитная палочка эк­вивалентна соленоиду.

§ 6. Относительность магнитных и электрических полей

Когда мы сказали, что магнитная сила на заряд пропорциональна его скорости, вы, наверное, подумали: «Какой скорости? По отношению к какой системе отсчета?» Из определения В, данного в начале этой главы, на самом деле ясно, что этот век­тор будет разным в зависимости от выбора системы отсчета, в которой мы определяем скорость зарядов. Но мы ничего не сказали о том, какая же система подходит для определения магнитного поля.

Оказывается, что годится любая инерциальная система. Мы увидим также, что магнетизм и электричество — не неза­висимые вещи, они всегда должны быть взяты в совокупности как одно полное электромагнитное поле. Хотя в статическом случае уравнения Максвелла разделяются на две отдельные пары: одна пара для электричества и одна для магнетизма, без видимой связи между обоими полями, тем не менее в самой природе существует очень глубокая взаимосвязь между ними, возникающая из принципа относительности. Исторически принцип относительности был открыт после уравнений Мак­свелла. В действительности же именно изучение электричества и магнетизма привело Эйнштейна к открытию принципа отно­сительности. Но посмотрим, что наше знание принципа отно­сительности подскажет нам о магнитных силах, если предпо­ложить, что принцип относительности применим (а в действи­тельности так оно и есть) к электромагнетизму.

Давайте подумаем, что произойдет с отрицательным заря­дом, движущимся со скоростью v0параллельно проволоке, по которой течет ток (фиг. 13.10).

Фиг. 13.10. Взаимодействие проволоки с током и частицы с зарядом q,

рассматриваемое в двух системах координат.

а — в системе S покоится проволока; б — в системе S' покоится заряд.

Постараемся разобраться в происходящем, используя две системы отсчета: одну, связан­ную с проволокой, как на фиг. 13.10, а, а другую — с частицей, как на фиг. 13.10, б. Мы будем называть первую систему отсче­та S, а вторую S'.

В системе S на частицу явно действует магнитная сила. Сила направлена к проволоке, поэтому, если заряду ничего не ме­шает, его траектория загнется в сторону проволоки. Но в си­стеме S' магнитной силы на частицу быть не может, потому что скорость частицы равна нулю. Что же, следовательно, она так и будет стоять на месте? Увидим ли мы в разных системах разные вещи? Принцип относительности утверждает, что в си­стеме S' мы увидели бы тоже, как частица приближается к проволоке. Мы должны попытаться понять, почему такое могло бы произойти.

Вернемся к нашему атомному описанию проволоки, по ко­торой идет ток. В обычном проводнике, вроде меди, электри­ческие токи возникают за счет движения части отрицательных электронов (называемых электронами проводимости), тогда как положительные ядерные заряды и остальные электроны ос­таются закрепленными внутри материал а. Пусть плотность электронов проводимости есть r, а их скорость в системе S есть v. Плотность неподвижных зарядов в системе S есть r+, что долж­но быть равно r- с обратным знаком, потому что мы берем не­заряженную проволоку. Поэтому вне проволоки электриче­ского поля нет, и сила на движущуюся частицу равна просто


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


5b. Электричество и магнетизм отзывы

Отзывы читателей о книге 5b. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.