My-library.info
Все категории

Ричард Фейнман - 2a. Пространство. Время. Движение

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 2a. Пространство. Время. Движение. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
2a. Пространство. Время. Движение
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
148
Читать онлайн
Ричард Фейнман - 2a. Пространство. Время. Движение

Ричард Фейнман - 2a. Пространство. Время. Движение краткое содержание

Ричард Фейнман - 2a. Пространство. Время. Движение - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

2a. Пространство. Время. Движение читать онлайн бесплатно

2a. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман
Назад 1 ... 13 14 15 16 17 18 Вперед

Предположим, что мы построили автомобиль и хотим узнать, сильно ли его будет трясти на ухабах. Соберем электрическую цепь, в которой индуктивности скажут нам об инерции колес, об упругости колес представление дадут емкости, сопротивле­ния заменят амортизаторы и т. д. В конце концов мы заменим элементами цепи все части автомобиля. Теперь дело за ухабами. Хорошо, подадим на схему напряжение от генератора — он смо­жет изобразить любой ухаб; измеряя заряд на соответствую­щем конденсаторе, мы получаем представление о раскачке колеса. Измерив заряд (это сделать легко), мы решим, что авто­мобиль трясет слишком сильно. Надо что-то сделать. То ли ос­лабить амортизаторы, то ли усилить их. Неужели придется переделывать автомобиль, снова проверять, как его трясет, а потом снова переделывать? Нет! Просто нужно повернуть ручку сопротивления: сопротивление номер 10 — это аморти­затор номер 3; так можно усилить амортизацию. Трясет еще сильнее — не страшно, мы ослабим амортизаторы. Все равно трясет. Изменим упругость пружины (ручка номер 17). Так мы всю наладку произведем с помощью электричества, много­кратным поворотом ручек.

Вот вам аналоговая вычислительная машина. Так называют устройства, которые имитируют интересующие нас задачи, описываемые теми же уравнениями, но совсем другой природы. Эти устройства легко построить, на них легко провести измере­ния, отладить их, и... разобрать!

§ 5. Последовательные и параллельные сопротивления

Обсудим, наконец, еще один важный вопрос, хотя он не сов­сем подходит по теме. Что делать с электрической цепью, если в ней много элементов? Например, когда индуктивность, сопротив­ление и емкость соединены, как показано на фиг. 24.2 , то все заряды проходят через каждый из трех элементов так, что связывающий элементы ток во всех точках цепи одинаков. Поскольку ток всюду одинаков, падение напряжения на соп­ротивлении равно IR, на индуктивности равно L(dI/dt) и т. д. Полное падение напряжения получается суммированием частичных падений, и мы приходим к уравнению (25.15). Исполь­зуя комплексные числа, мы решили это уравнение в случае равновесного отклика на синусоидальную силу. Мы нашли, что V=ZI (Z называется импедансом цепи). Зная импеданс, легко найти ток в цепи I, если к цепи приложено синусоидальное нап­ряжение V.

Предположим, что нужно собрать более сложную цепь из двух кусков, импедансы которых равны Z1 и Z2; соединим их по­следовательно (фиг. 25.6, а) и приложим напряжение.

Фиг. 25.6. Импедансы, соеди­ненные последовательно (а) и па­раллельно (б).

Что слу­чится? Задача немного сложнее предыдущей, но разобраться в ней нетрудно: если через Z1 течет ток I1, то падение напряже­ния на Z1 равно V1=IZ1, а падение напряжения на Z2 будет V2 = IZ2. Через оба элемента цепи течет одинаковый ток. Пол­ное падение напряжения вдоль такой цепи равно V=V1+V2=(Z1+Z2)I. Таким образом, падение напряжения в такой цепи мощно записать в виде V=IZs, a Zs импеданс системы, состав­ленной из двух последовательно соединенных элементов, равен сумме импедансов отдельных элементов

Zs=Z1+Z2. (25.16)

Но это не единственный способ решения вопроса. Можно со­единить отдельные элементы параллельно (фиг. 25.6,б). При та­ком соединении, если соединительные провода считать идеаль­ными проводниками, к обоим элементам приложено одинаковое внешнее напряжение, а сила тока в каждом элементе не зависит от другого элемента. Ток через Z1 равенI1=V/Z1, ток в Z2 равен /2=V/Z2. Напряжение в обоих случаях одинаково. Полный ток через концы цепи равен сумме токов в отдельных частях цепи:

I=V/Z1+V/Z2. Это можно записать и так:

Таким образом,

Многие сложные цепи иногда становятся более понятными, если расчленить их на куски, выяснить, чему равны импедансы отдельных частей, а затем шаг за шагом следить за соединением частей, помня о только что выведенных правилах. Если мы соб­рали цепь из большого числа произвольно соединенных эле­ментов и создаем в этой цепи разности потенциалов при помощи небольших генераторов, импедансом которых можно пренебречь (когда заряд проходит через генератор, то потенциал возрастает на V), то при анализе цепи можно использовать такие правила:

1) сумма токов, протекающих через любое соединение, равна нулю; ведь притекший к любому соединению ток должен обязательно вытечь из него;

2) если заряд, двигаясь по замкнутой петле, вернулся в то место, откуда начал путешествие, полная работа должна быть равна нулю.

Эти правила называются законами Кирхгофа. Систематиче­ское применение этих правил часто облегчает анализ работы сложных цепей. Мы к ним вернемся, когда будем говорить о законах электричества.

* В новейших супергетеродинных приемниках дело, конечно, об­стоит сложнее. Усилители приемника настроены на определенную промежуточную частоту; осциллятор с переменной настраивающейся частотой связан с входным сигналом нелинейной связью, порождая новую частоту (равную разности частот сигнала и осциллятора) —промежуточную частоту, которая и усиливается. Об этом мы поговорим в гл. 50 (вып. 4).

* Решения, которые нельзя выразить линейно одно через другое, называются независимыми решениями.

Назад 1 ... 13 14 15 16 17 18 Вперед

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


2a. Пространство. Время. Движение отзывы

Отзывы читателей о книге 2a. Пространство. Время. Движение, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.