Рис. 3.6.Пример искривлённого трёхмерного пространства, окружающего Солнце
Третьим недостатком этой аналогии является то, что мы игнорировали временное измерение. Мы сделали это для большей наглядности: хотя специальная теория относительности и провозглашает, что мы должны рассматривать временное измерение наравне с пространственными, «увидеть» время значительно сложнее. Однако, как видно из примера с аттракционом «Верхом на торнадо», ускорение и, следовательно, гравитация, искривляют и пространство, и время. (В действительности, использование математического аппарата общей теории относительности показывает, что при относительно медленном движении тел, например, при вращении планеты вокруг обычной звезды, подобной Солнцу, искривление времени на самом деле оказывает гораздо меньшее влияние на движение планеты, чем искривление пространства.) Мы вернёмся к обсуждению искривления времени позже.
Если вы будете помнить об этих трёх важных замечаниях, то использование наглядной модели, состоящей из резиновой плёнки и шара для боулинга, в качестве интуитивного обобщения предложенного Эйнштейном нового взгляда на гравитацию, является вполне приемлемым.
Разрешение противоречия
Введя пространство и время в качестве динамических объектов, Эйнштейн создал ясный концептуальный образ того, как устроено тяготение. Главная проблема, однако, состоит в том, разрешает ли новая формулировка гравитационного взаимодействия то противоречие со специальной теорией относительности, которым страдала теория тяготения Ньютона. Да, разрешает. И снова аналогия с резиновой плёнкой поможет понять основную идею. Представим себе, что у нас есть шарик, который катится по прямой линии по поверхности плоской плёнки в отсутствие шара для боулинга. Если поместить шар для боулинга на плёнку, движение шарика изменится, но не мгновенно. Если бы мы сняли эту последовательность событий на видеоплёнку и просмотрели её в замедленном темпе, мы бы увидели, что возмущение, вызванное появлением шара для боулинга, распространяется подобно волнам в пруду и, в конце концов, достигает места, в котором находится шарик. Спустя короткое время переходные колебания резиновой плёнки затухнут, и она перейдёт в стационарное искривлённое состояние.
То же самое справедливо и для структуры пространства. При отсутствии масс пространство является плоским, и небольшое тело будет находиться в состоянии безмятежного покоя или двигаться с постоянной скоростью. Когда на сцене появляется большая масса, пространство искривляется, — но, как и в случае с плёнкой, деформация не будет мгновенной. Она будет распространяться в стороны от массивного тела и, в конце концов, придёт в установившееся состояние, передающее гравитационное притяжение нового тела. В нашей аналогии возмущение распространяется по резиновой плёнке со скоростью, зависящей от характеристик материала, из которого изготовлена плёнка. Эйнштейн сумел рассчитать скорость, с которой распространяется возмущение структуры Вселенной в реальных условиях. Оказалось, что она в точности равна скорости света. Это означает, например, что в рассмотренном выше гипотетическом примере, когда гибель Солнца оказывает влияние на судьбу Земли ввиду изменения их взаимного гравитационного притяжения, это влияние не будет мгновенным. Когда тело изменяет своё положение или даже взрывается, оно вызывает изменение в деформированном состоянии структуры пространства-времени, которое распространяется во все стороны со скоростью света, в полном соответствии с устанавливаемым специальной теорией относительности пределом для космических скоростей. Таким образом, мы на Земле увидим гибель Солнца в тот самый момент, когда ощутим изменения гравитационного притяжения спустя примерно восемь минут после взрыва Солнца. Тем самым формулировка Эйнштейна разрешает конфликт — гравитационные возмущения не отстают от фотонов, но и не опережают их.
Снова об искривлении времени
Картинки, которые мы видим на рис. 3.2, 3.4 и 3.6, иллюстрируют сущность того, что означает «искривлённое пространство». Кривизна деформирует форму пространства. Физики пытались создать аналогичные образы для того, чтобы продемонстрировать смысл «искривлённого времени», но они оказались гораздо сложнее для восприятия, поэтому мы не будем их здесь приводить. Вместо этого последуем примеру Слима и Джима из аттракциона «Верхом на торнадо» и попытаемся осознать ощущение искривлённости времени, обусловленной гравитацией.
Для этого снова посетим Джорджа и Грейс, которые находятся уже не во мраке пустого космического пространства, а где-то на окраине Солнечной системы. Оба они всё ещё носят на своих скафандрах большие цифровые часы, которые мы когда-то синхронизировали. Для простоты не станем учитывать влияние планет и будем рассматривать только гравитационное поле Солнца. Далее, представим себе, что космический корабль, зависший около Джорджа и Грейс, размотал длинный трос, конец которого достигает окрестностей солнечной поверхности. С помощью этого троса Джордж медленно перебирается ближе к Солнцу. По пути он периодически останавливается, чтобы сравнить темп хода времени на его часах и на часах Грейс. Искривление времени, предсказываемое общей теорией относительности Эйнштейна, означает, что по мере того, как он будет испытывать всё более сильное воздействие гравитационного поля, его часы будут всё больше отставать от часов Грейс. Иными словами, чем ближе он будет к Солнцу, тем медленнее будут идти его часы. Именно в этом смысле гравитация деформирует не только пространство, но и время.
Вы должны были заметить, что в отличие от случая, рассмотренного в главе 2, когда Джордж и Грейс находились в пустом пространстве, перемещаясь относительно друг друга с постоянной скоростью, сейчас между ними нет симметрии. Джордж, в отличие от Грейс, ощущает, что сила тяжести становится всё сильнее — ему приходится держаться за трос всё крепче, чтобы не дать Солнцу притянуть себя. Оба согласны с тем, что часы Джорджа идут медленнее. Их точки зрения уже не являются «одинаково равноправными», что позволяло им обмениваться ролями и менять выводы на противоположные. На самом деле, ситуация схожа с той, с которой мы столкнулись в главе 2, когда Джордж испытал ускорение, включив ранцевый двигатель для того, чтобы догнать Грейс. Тогда ускорение Джорджа привело к тому, что его часы определённо стали идти медленнее, чем часы Грейс. Поскольку теперь мы знаем, что ощущение ускоренного движения совпадает с ощущением воздействия гравитационной силы, в теперешнем положении Джорджа, перебирающегося по тросу, действует тот же самый принцип, и мы снова видим, что часы Джорджа и все события в его жизни замедляются по сравнению с ходом времени у Грейс.
В гравитационном поле, подобном тому, которое существует на поверхности рядовой звезды вроде нашего Солнца, замедление темпа хода часов будет небольшим. Если Грейс находится на расстоянии миллиарда километров от Солнца, то когда Джордж будет в нескольких километрах от поверхности нашего светила, темп хода его часов составит примерно 99,9998% темпа хода часов Грейс. Такое замедление очень мало. {20} Однако если Джордж будет спускаться по тросу, который висит над поверхностью нейтронной звезды, масса которой примерно равна массе Солнца, а плотность вещества превышает солнечную примерно в миллион миллиардов раз, сильное гравитационное поле этой звезды замедлит темп хода его часов до 76% темпа хода часов Грейс. Ещё более сильные гравитационные поля, подобные тем, которые имеют место на внешней поверхности чёрных дыр (они обсуждаются ниже), могут замедлить ход времени ещё сильнее. Более сильные гравитационные поля вызывают более сильное искривление времени.
Экспериментальное подтверждение общей теории относительности
Большинство из тех, кому приходится изучать общую теорию относительности, бывают очарованы её эстетической привлекательностью. Путём замены холодного, механистического взгляда Ньютона на пространство, время и тяготение на динамическое и геометрическое описание, включающее искривлённое пространство-время, Эйнштейн сумел «вплести» тяготение в фундаментальную структуру Вселенной. Перестав быть структурой, наложенной дополнительно, гравитация стала неотъемлемой частью Вселенной на её наиболее фундаментальном уровне. Вдохнув жизнь в пространство и время, позволив им искривляться, деформироваться и покрываться рябью, мы получили то, что обычно называется тяготением.