My-library.info
Все категории

Владилен Барашенков - Кварки, протоны, Вселенная

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Владилен Барашенков - Кварки, протоны, Вселенная. Жанр: Физика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Кварки, протоны, Вселенная
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
135
Читать онлайн
Владилен Барашенков - Кварки, протоны, Вселенная

Владилен Барашенков - Кварки, протоны, Вселенная краткое содержание

Владилен Барашенков - Кварки, протоны, Вселенная - описание и краткое содержание, автор Владилен Барашенков, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В книге рассказывается об узловых проблемах современной физической картины мира: о черных и белых дырах во Вселенной, о «прелестных», «ароматных» и «цветных» частицах — кварках, о космических мирах, спрятанных внутри частиц, о пустоте, которая оказывается не пустотой, а материальной субстанцией, о квантах пространства и квантах времени, о гипотетических монополях и антивеществе. Для широкого круга читателей.

Кварки, протоны, Вселенная читать онлайн бесплатно

Кварки, протоны, Вселенная - читать книгу онлайн бесплатно, автор Владилен Барашенков

Размышляя о ее причинах, Дирак неожиданно обнаружил, что если в природе наряду с квантом электричества существует квант магнетизма, то в соответствии с теорией получается интересный парадокс: перемещая измерительный прибор по замкнутому контуру и выполняя измерения в одних и тех же точках, мы для некоторых величин при каждом повторном обходе будем получать новые значения, чего никогда не наблюдалось. Наоборот, во всех экспериментах наблюдаемые величины оказывались зависящими только от точек, в которых они измеряются, и ни от чего другого. Никакой «памяти о прошлом» у измеряемых величин нет. Казалось бы, этот парадокс — убедительное доказательство того, что никаких квантов магнетизма в природе быть не может.

И вот тут Дирак сделал важное открытие. Он заметил, что если величина электрического и магнитного зарядов такова, что их произведение равно целому или полуцелому числу, то все «неудобные» слагаемые в теоретических формулах, зависящие от числа обходов контура, обращаются в нуль. Получается, что гипотеза монополей не только делает теорию полностью симметричной по отношению к электричеству и магнетизму — на это обращал внимание еще Хевисайд,— но и приводит к квантованию электрического и магнитного зарядов. Иначе говоря, в природе возможны только такие заряды, которые удовлетворяют формуле Дирака.

По сравнению с теорией Хевисайда, которая в глазах современников выглядела необоснованной догадкой, теория Дирака была в высшей степени последовательна и сразу же получила признание. Однако ответить на вопрос, существуют в природе монополи или нет, она все равно не могла. Гипотеза монополей входила в нее как постулат. Верен он или нет, на это должен ответить эксперимент.

Вполне возможно, что никаких монополей в природе нет, ведь эти частицы потребовались Дираку лишь для того, чтобы объяснить дискретность зарядов, а она может иметь и другое происхождение. Не приходим ли мы здесь в противоречие со знаменитой бритвой Оккама, пытаясь объяснить «старую тайну при помощи новой загадки»? В средние века считалось позволительным строить длинные цепочки гипотез, где каждая последующая была нужна лишь для обоснования предыдущей. К этому прибегали особенно тогда, когда требовалось согласовать сложные явления окружающего мира с догмами священного писания. Английский философ и монах Уильям Оккам первым выдвинул принцип «не следует с помощью большего делать то, чего можно достигнуть меньшей ценой», и рекомендовал пользоваться им в качестве «методологической бритвы», срезающей излишние гипотезы и слабо обоснованные рассуждения. С тех пор бритва Оккама прочно вошла в методологию науки.

В современной физике этот принцип понимается несколько шире. Считается, что в мире может реализоваться любая возможность, которая не противоречит нашим основным представлениям о законах природы. Во всяком случае такую возможность следует во что бы то ни стало изучить, и если она существует лишь гипотетически, то это само по себе выглядит уже загадочным и, в свою очередь, нуждается в объяснении. Физика наших дней — наука математическая, и часто оказывается так, что в ее уравнениях бывают скрыты неожиданные возможности, приводящие к замечательным предсказаниям и к выдающимся открытиям. Примером такого предсказания и является гипотеза монополей Дирака.

Это та самая теоретическая возможность, которую невозможно упустить, мимо которой нельзя пройти. И неспроста она породила целую лавину исследований. Теоретики анализировали ее следствия, пытаясь обнаружить какие-либо противоречия, но так и не обнаружили, экспериментаторы в поисках монополей обшаривали все доступные им земные и космические материалы.

Естественно, монополь должен чем-то существенно отличаться от всех других частиц, иначе он попросту затеряется среди них и его можно прозевать. Среди его свойств должно быть что-то особенное, за что можно зацепиться при постановке эксперимента.

У монополя такое свойство есть. Из формул Дирака вытекает, что минимальная порция магнитного заряда по своей величине должна быть раз в 100 больше электрического заряда электрона, а раз так, то монополи должны сильно взаимодействовать с окружающим веществом. А это значит, что их можно сравнительно легко отделить от других, немагнитных частиц. К тому же, однажды родившись, монополь не может исчезнуть, так как магнитный заряд, как и электрический, сохраняется всегда. Исчезнуть монополь может, лишь столкнувшись с антимонополем, но вероятность такого события ничтожна. В этом отношении монополи подобны кваркам.

Один из способов обнаружить монополи — искать их следы в фотоэмульсии. У них должны быть очень «жирные» следы. Как раз такой необычно плотный след в стопке фотопластинок и пластиковых, пленок был обнаружен американскими физиками в опыте, о котором они рассказывали на международной конференции. На воздушных шарах они поднимали фотопластинки и пленки на большую высоту, почти в безвоздушное пространство, и там в продолжение нескольких суток все это облучалось в потоке космических лучей. Но скорее всего, это был след какого-то тяжелого иона — атома тяжелого элемента с ободранной оболочкой, который оставляет такой же плотный след в детектирующем материале. Исключить такую возможность американские физики не могли, и безжалостная бритва Оккама отсекла гипотезу обнаруженного ими монополя.

Монополи искали и среди частиц, родившихся на ускорителях. Такие опыты выполняются в хорошо контролируемых условиях, и точность здесь значительно выше, чем в космических лучах. Искали разными способами, используя самые совершенные и точные приборы, и ни намека на следы магнитных зарядов.

Пожалуй, наиболее точными были эксперименты, в которых раздробленные образцы различных материалов перемещались по оси соленоида. Если бы они содержали магнитные заряды, в катушке соленоида должен был бы возникнуть электрический ток (вспомним знакомый всем по школе знаменитый опыт Фарадея по превращению магнетизма в электричество!). Эксперимент проводили при очень низкой температуре, вблизи абсолютного нуля, когда металл соленоида становился сверхпроводящим и образовавшийся в нем ток должен был бы циркулировать практически неограниченное время. Многократно прогоняя исследуемый образец по оси соленоида, можно получить («накопить») значительный ток даже при очень малой концентрации монополей. Таким способом было обследовано множество минералов, выброшенное вулканами вещество земных недр, вода океанов, метеориты, много килограммов лунного грунта, даже контейнеры, в которых хранился этот грунт (может быть, в нем застряла часть монополей?). Если бы на 1028 атомов (несколько ведер) вещества приходилось всего только по одному монополю, их присутствие было бы замечено в этих экспериментах. Однако регистрирующие приборы молчали. Монополей не было ни в земном, ни в небесном веществе.

И все же утверждать, что, изолированных магнитных зарядов в природе не существует и все разговоры о магнитном веществе — ненаучная фантастика, было бы преждевременно. В сегодняшних ускорителях могут рождаться только такие частицы, которые не более чем в несколько сот раз тяжелее протона: для рождения более массивных частиц энергии недостаточно. Поэтому если монополи — очень тяжелые частицы, то в опытах на ускорителях они не могут образоваться. Монополи должны были бы рождаться под действием космических лучей, содержащих сверхвысокоэнергетические частицы. Но и здесь есть обстоятельство, которое мешает заметить рождающиеся монополи. Согласно теории магнитные частицы настолько сильно взаимодействуют с веществом, что растрачивают свою энергию почти сразу же после рождения, не успев далеко уйти от точки, где образовались. А поскольку закон сохранения заряда требует, чтобы монополи обязательно рождались парами — один с отрицательным, другой с положительным зарядом, — то, затормозившись, они скорее всего тут же аннигилируют и превратятся в обычные немагнитные частицы. Теория говорит, что в большинстве случаев это будут пучки жестких гамма-квантов.

Физики, изучающие космические лучи, в своих опытах не раз замечали узконаправленные вспышки очень интенсивного гамма-излучения. Вообще это можно было бы считать указанием на рождение и аннигиляцию монополей, однако имеются веские основания предполагать, что для рождения монополей не хватает энергии даже самых быстрых космических частиц.

Как бы там ни было, неудача всех попыток обнаружить следы магнитных зарядов охладила энтузиазм физиков. Ясно, что в природе есть что-то такое, что мешает осуществлению красивой идеи Дирака.

Когда разумно поставленная задача долго не находит решения, полезно взглянуть на всю проблему с совершенно иной точки зрения. Среди физиков популярен был когда-то анекдот о том, как решает задачу посредственный научный сотрудник. Задача была взята из истории зоопсихологии, представители которой а начале XX в. исследовали мышление обезьян. Там была, в частности, такая задача. Экспериментаторы прикрепили к


Владилен Барашенков читать все книги автора по порядку

Владилен Барашенков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Кварки, протоны, Вселенная отзывы

Отзывы читателей о книге Кварки, протоны, Вселенная, автор: Владилен Барашенков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.