My-library.info
Все категории

Ричард Фейнман - 7. Физика сплошных сред

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 7. Физика сплошных сред. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
7. Физика сплошных сред
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
138
Читать онлайн
Ричард Фейнман - 7. Физика сплошных сред

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

Ричард Фейнман - 7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

7. Физика сплошных сред читать онлайн бесплатно

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман

Итак, мы видим, что существуют решетки, обладающие «четырехсторонней» симметрией. А раньше мы описали плотную упаковку, основанную на шестиугольнике и обладающую шестисторонней симметрией. Вращение набора кружков на фиг. 30.5, а на угол 60° вокруг центра любого шарика пере­водит рисунок сам в себя.

Какие виды вращательной симметрии существуют еще? Может ли быть, например, вращательная симметрия пятого или восьмого порядка? Легко понять, что они невозможны. Единственная симметрия, связанная с фигурой, имеющей более четырех сторон, есть симметрия шестого порядка. Прежде всего покажем, что симметрия более чем шестого порядка невозмож­на. Попытаемся вообразить решетку с двумя равными основ­ными векторами, образующими угол менее 60° (фиг. 30.8, а).

Фиг. 30.8. Симметрия вра­щения выше шестого порядка невозможна (а); симметрия вращения пятого порядка невозможна (б).

Мы должны предположить, что точки В и С эквивалентны А и что а и bнаиболее короткие векторы, проведенные из А до эквивалентных соседей. Но это, безусловно, неверно, потому что расстояние между В и С короче, чем от любого из них до А. Должна существовать соседняя точка D, эквивалентная А, ко­торая ближе к А, чем к В или С. Мы должны были бы выбрать b' в качестве одного из основных векторов. Поэтому угол между основными векторами должен быть равен 60° или еще больше. Октагональная симметрия невозможна.

А как быть с пятикратной симметрией? Если мы предполо­жим, что основные векторы а и b имеют одинаковую длину и образуют угол 2p/5=72° (фиг. 30.8, б), то должна существовать эквивалентная точка решетки в D под 72° к линии АС. Но век­тор b' от Е к D тогда короче b, и b уже не основной вектор. Пятикратной симметрии быть не может. Единственные воз­можности, не приводящие к подобным трудностям, это q=60, 90 или 120°. Очевидно, допустимы также нуль и 180°. Можно еще так выразить полученный нами результат: рисунок может не меняться при повороте на полный оборот (ничего не изме­няется), полоборота, одну треть, одну четверть или одну ше­стую оборота. И этим исчерпываются все возможные вращатель­ные симметрии на плоскости — всего их пять. Если 8=2p/n, то мы говорим об «n-кратной» симметрии, или симметрии n-го порядка. Мы говорим, что узор, для которого n равно 4 или 6, обладает более «высокой симметрией», чем узор с n, равным 1 или 2.

Вернемся к фиг. 30.7, а. Мы видим, что узор там обладает четырехкратной вращательной симметрией. На фиг. 30.7, б мы нарисовали другое расположение, которое обладает теми же свойствами симметрии, что и фиг. 30.7, а. Маленькие фигурки, похожие на запятые,— это асимметричные объекты, которые служат для определения симметрии изображения внутри каж­дого квадратика. Заметьте, что запятые в соседних квадратиках перевернуты попеременно, так что элементарная ячейка боль­ше одного квадратика. Если бы запятых не было, рисунок по-прежнему обладал бы четырехкратной симметрией, но эле­ментарная ячейка была бы меньше. Посмотрим внимательно на фиг. 30.7; мы обнаружим, что они обладают еще и другими типами симметрии. Так, отражение относительно каждой пунк­тирной линии R—R воспроизводит рисунок без изменений. Но это еще не все. У них есть еще один тип симметрии. Если отразить рисунок относительно линии y—y, а затем сдвинуть на один квадратик вправо (или влево), то снова получится пер­воначальный рисунок. Линия у—у называется линией сколь­жения.

Этим исчерпываются все типы симметрии в пространстве двух измерений. Есть еще одна пространственная операция сим­метрии, которая на плоскости эквивалентна вращению на 180°, однако в трехмерном пространстве она не сводится к этому вра­щению, а есть совсем другая операция. Я говорю об инверсии. Под инверсией мы подразумеваем такую операцию, когда лю­бая точка, отвечающая вектору смещения из начала координат R (например, точка А на фиг. 30.9, б), переносится в точку —R.

Фиг. 30.9. Операция симметрии, называемая инверсией.

а — рисунок меняется; б — рисунок не меняется при преобразовании R ® -R;

в — в трех измерениях рисунок не симметричен после операции инверсии;

г — рисунок симметричен в трех измерениях.

Инверсия рисунка а на фиг. 30.9 дает новый рисунок, а инверсия рисунка б приводит к такому же рисунку. На дву­мерном узоре (вы можете это видеть) инверсия рисунка б в точ­ке А эквивалентна повороту на 180° вокруг той же самой точки. Предположим, однако, что мы сделали узор на фиг. 30.9, б трехмерным, вообразив на маленьких шестерках и девятках «стрелочки», смотрящие из страницы кверху. В результате ин­версии в трехмерном пространстве все стрелочки перевернутся и направятся вниз, так что узор не воспроизведется. Если мы обозначим острия и хвосты стрелок точками и крестиками, то сможем образовать трехмерный рисунок (фиг. 30.9, в), который несимметричен относительно инверсии, или же мы можем получить рисунок, который такой симметрией обладает (фиг. 30.9, г). Заметьте, что трехмерную инверсию нельзя получить никакой комбинацией вращений.

Если мы будем характеризовать «симметрию» рисунка (или решетки) разного рода операциями симметрии, которые мы только что описали, то окажется, что в двумерном случае сущест­вуют 17 различных форм узоров. Узор с наинизшей возможной симметрией мы изобразили на фиг. 30.1, а узор с одной из наи­высших симметрии — на фиг. 30.7. Отыщите сами все 17 возможных форм рисунков.

Удивительно, как мало типов из этих 17 используется при изготовлении обоев и тканей! Всегда видишь одни и те же три или четыре основных типа. В чем здесь дело? Неужели так убо­га фантазия художников или, может быть, многие из возмож­ных типов рисунков не будут радовать глаз?

§ 6. Симметрии в трех измерениях

До сих пор мы говорили только об узорах в двух измерениях. На самом же деле нас интересуют способы размещения атомов в трех измерениях. Прежде всего очевидно, что трехмерный кристалл имеет три основных вектора. Если же мы поинтересу­емся возможными операциями симметрии в трех измерениях, то обнаружим, что существует 230 возможных типов симметрии! По некоторым соображениям, эти 230 типов можно разделить на семь классов, представленных на фиг. 30.10.

Фиг. 30.10. Семь классов кристаллической решетки.

Решетка с наи­меньшей симметрией называется триклинной. Ее элементар­ная ячейка представляет собой параллелепипед. Основные век­торы все имеют разную длину и нет ни одной одинаковой пары углов между ними. И никакой вращательной или зеркальной симметрии здесь нет. Однако есть еще одна операция: при ин­версии в узле элементарная ячейка может меняться, а может и не меняться. [Под инверсией в трех измерениях мы снова подра­зумеваем, что пространственное смещение R заменяется на -R, или, другими словами, точка с координатами (х, у, z) переходит в точку с координатами (-x,-y, -z). Поэтому симметрия триклинной решетки может быть только двух типов — с центром инверсии и без него.] Пока мы считали, что все векторы разные и расположены под произвольными углами. Если же все век­торы одинаковы и углы между ними равны, то получается тригональная решетка, изображенная на рисунке. Ячейка такой решетки может иметь добавочную симметрию; она может еще и не меняться при вращении вокруг наибольшей телесной диагонали.

Если один из основных векторов, скажем с, направлен под прямым уг­лом к двум остальным, то мы получаем моноклинную элементарную ячейку. Здесь возможна новая симметрия — вращение на 180° вокруг с. Гексагональ­ная решетка — это частный случай, когда векторы а и b равны и угол меж­ду ними составляет 60°, так что вра­щение на 60, 120 или 180° вокруг вектора с приводит к той же самой решетке (для определенных внутренних типов симметрии).

Если все три основных вектора пер­пендикулярны друг другу, но не равны по длине, получается ромбическая ячей­ка. Фигура симметрична относительно вращений на 180° вокруг трех осей. Типы симметрии более высокого поряд­ка возникают у тетрагональной ячей­ки, все углы которой прямые и два основных вектора равны. Наконец, имеется еще кубическая ячейка, самая симметричная из всех.


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


7. Физика сплошных сред отзывы

Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.