Проанализируем формулировки обоих законов. Что такое ускорение - в основном уже объяснил Галилей, когда он простыми математическими средствами исследовал понятие изменяющейся скорости. Ньютон, который располагал созданным им самим и Готфридом Вильгельмом Лейбницем (1646-1716) исчислением бесконечно малых, мог облегчить себе задачу. Ускорение есть изменение скорости в единицу времени, производная скорости по времени и, следовательно, вторая производная по времени радиуса-вектора, проведенного из любого начала координат к материальной точке. Если известны результаты измерения координат и времени, то скорость и ускорение становятся также известными. Первый закон дает, следовательно, дифференциальное уравнение второго порядка для координат точки как функции времени; его интегрирование определяет путь и скорость, с которой этот путь будет пройден. Если нет никакой силы, ускорение равно нулю; движение происходит прямолинейно с постоянной скоростью, как этого требует закон инерции.
Второй закон показывает, что масса есть «инертная» масса. Если два тела получают взаимные ускорения, то последние по величине обратно пропорциональны их массам. При начальной скорости, равной нулю, скорости и пути, пройденные в одинаковые промежутки времени, также обратно пропорциональны массам. Геометрическое измерение пути позволяет, таким образом, отнести каждую массу к произвольно выбранной единице. Когда ускорения имеют противоположные направления, сумма из произведений массы на скорость остается неизменной; она равна нулю в частном случае, когда оба тела сначала были в покое. В связи с тем, что произведение массы на скорость называется импульсом, можно изложенные законы выразить в форме, принятой в настоящее время:
1) сила равна изменению импульса в единицу времени *);
2) в системе, не подверженной внешним влияниям и состоящей из двух или произвольно большого количества масс, общий импульс является постоянной величиной (закон сохранения импульса).
*) Уже Ньютон пользовался этой формулировкой.
В этих высказываниях в неявной форме заключается утверждение, что силы, с которыми два тела действуют друг на друга, не нарушаются третьим телом и что масса есть неизменяемое свойство тела.
Последнее утверждение принималось механикой с самого начала ее развития, так как взвешивания никогда не обнаруживали изменения массы. Одним из важнейших достижений химии, ставшей наукой в XVIII веке, было установление того, что при химических реакциях общая масса участников реакции остается постоянной. Заслуга установления этого положения принадлежит А. Лавуазье (1743-1794). Позднее, с 1895 по 1906 г., оно было подтверждено особо точными взвешиваниями Ганса Ландольта (1831-1910). В настоящее время мы рассматриваем постоянство массы только как приближение, конечно, совершенно достаточное для механики, химии и многих областей физики.
В опытах, на которых основывается динамика, силы измеряются взвешиванием - способом, применяющимся исстари до сих пор; если силы действовали не строго вертикально вниз, то применяли шнуры на роликах. Таким образом, понятие силы было экспериментально обосновано, и можно было думать, что оно освобождено от всякой таинственности. Но так последовательно не думали ни в XVII, ни в XVIII столетиях. Само значение слова «сила» не было вполне установлено, и нагромождались заблуждение за заблуждением. Поскольку каждому сознательному применению человеком силы предшествует волевой акт, то позади физического понятия силы искали нечто более глубокое, метафизическое, какое-то присущее телам стремление; в случае, например, силы тяжести - стремление соединиться с себе подобным. Нам теперь трудно понять эту точку зрения. Насколько она была тогда распространена даже среди выдающихся умов, показывает спор между картезианцами, с одной стороны, и Лейбницем с его последователями, с другой стороны, о «мере силы, соответствующей природе». Одни считали такой мерой количество движения, порожденное силой в определенный момент времени, другие - то, что теперь называют кинетической энергией, а раньше называлось «живой силой». Ньютон не смог в этом вопросе занять ясной позиции. Уже Даламбер (1717-1783) охарактеризовал бесконечную дискуссию, которая велась по этому поводу, как словесный спор. Но понятие силы для многих оставалось мистическим до тех пор, пока в 1874 г. Г. Р. Кирхгоф (1824-1887) не сказал решающего слова в первом предложении своих «Лекций по механике»: «Механика есть наука о движении; мы считаем ее задачей: описать наиболее полно и просто происходящие в природе движения». Согласно этому вектор, изображающий силу, считают функцией положения материальной точки или времени или обоих вместе. Скорость может быть также включена в определение силы, как это имеет место, например, для сил трения. Поэтому интегрирование ньютоновского уравнения движения является чисто математической задачей, разрешение которой дает ответ на любой обоснованный вопрос о движении. Больше физика ничего не может сделать и ничего больше здесь нельзя от нее требовать. Если читатель поймет слово «описание» как причинное объяснение, то надо ему сказать: объяснение явления природы может состоять только в том, чтобы поставить его в связь с другими явлениями природы посредством известных законов, в результате чего комплекс связанных явлений описывается как целое. Этот взгляд не только проводится в механике, но является в наше время всеобщим.
В период времени от Галилея до Ньютона существовала еще вторая важная линия развития. Еванжелиста Торричелли (1608-1647) под влиянием опыта Галилея с всасывающим насосом изобрел в 1643 г. ртутный барометр. Блэз Паскаль (1623-1662) побудил своего зятя Перье сравнить показания барометра на Пюи де Дом и в Клермоне (различие в высоте над уровнем моря примерно 1000 м). Отто Герике (1602-1686) изобрел воздушный насос и объяснил на основе многих очень внушительных опытов природу атмосферного давления*). Во Введении уже было сказано, что в 1662 г. был известен закон Бойля-Мариотта относительно связи давления и объема воздуха. Другие газы **) не были тогда в распоряжении исследователей; лишь в 1766 г. Генри Кавендиш (1731-1810) открыл кислород, а в 1772 г. Даниил Резерфорд (1749-1819) - азот. Современник Паскаля Роберт Гук (1635-1703) в 1676 г. показал на простых примерах пропорциональность между деформацией и упругостью у твердых тел. Так к 1700 г. был заложен физический фундамент, на котором в следующие полтора столетия было воздвигнуто величественное здание механики. Характерная для механики точность связана с тем, что она развивалась преимущественно силами математиков. В XVIII столетии здесь преобладали французы. Действительно, ньютоновские идеи распространились прежде всего во Франции, не только среди специалистов, но в значительно более широких слоях. Этому способствовал особенно Вольтер. Здесь мы имеем хороший пример влияния физики на общее духовное развитие и поэтому также на политику.
*) «Магдебургские полушария» демонстрировались в 1656 г. Но лишь в 1663 г. Герике написал резюмирующее сообщение о своих опытах, которое появилось в 1672 г. под названием «Новые магдебургские опыты над пустым пространством».
**) Слово «газ» встречается в 1640 г. у голландского химика и врача Гельмонта. Повидимому, в основе его лежит употребленное Парацельсом (1493-1541) слово «хаос» для «смеси воздуха».
Наиболее выдающимися математиками были: Даниил Бернулли (1700-1782) и Леонард Эйлер (1707-1783), которые занимались системами многих материальных точек, твердыми телами и гидродинамикой; Жан Даламбер (1717-1783) - автор названного по его имени принципа, заменяющего уравнения движения; Жозеф Луи Лагранж (1736-1813), придавший этим дифференциальным уравнениям особенно удобную форму для сложных случаев; Пьер Симон Лаплас (1749-1827), который опубликовал в 1800 г. пятитомную «Небесную механику», содержащую гораздо больше, чем обещает название, между прочим, теорию волн в жидкости и теорию капиллярности. Так наступил блестящий расцвет аналитической механики. Дальше надо упомянуть Луи Пуансо (1777-1859), который развил механику твердого тела; Гаспара Гюстава Кориолиса (1792-1843), изучавшего влияние вращения Земли на происходящие на ней механические явления; Огюстена Луи Коши (1789-1857), давшего в 1822 г. наиболее общую математическую формулировку важных понятий деформации и упругого напряжения; исходя из закона Гука, он математически развил механику деформируемых тел, придав ей законченную форму. Вильям Роуэн Гамильтон (1805-1865) установил принцип наименьшего действия, к которому мы еще вернемся. Карл Густав Якоб Якоби (1804-1851) нашел метод исследования движения системы многих тел с помощью дифференциального уравнения Гамильтона-Якоби. Эту эпоху можно считать в основном законченной после исследований Жана Леона Пуазейля (1799-1869) о внутреннем трении в жидкостях и газах (1846-1847) и установления Гельмгольцем законов вихревого движения. Однако вплоть до современности над динамикой вязких жидкостей и газов продолжали работать выдающиеся исследователи, например, Рэлей (1842-1919), Осборн Рейнольде (1842-1912) и Л. Прандтль; их целью было прежде всего создание водного и воздушного транспорта. В этих работах существенную роль играет различие между упорядоченными («ламинарными») и неупорядоченными («турбулентными») потоками. Если в настоящее время ограничиваются только экспериментами, иногда требующими больших средств, то это происходит потому, что еще не разрешены соответствующие проблемы, поставленные перед современной математикой. Но никто не ожидал при этом результатов, которые выходили бы за пределы основ ньютоновской механики.