My-library.info
Все категории

Ричард Фейнман - 1. Современная наука о природе, законы механики

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 1. Современная наука о природе, законы механики. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
1. Современная наука о природе, законы механики
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
178
Читать онлайн
Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

Ричард Фейнман - 1. Современная наука о природе, законы механики - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

1. Современная наука о природе, законы механики читать онлайн бесплатно

1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман

Разобрав вопрос о перенесении начала координат, мы рас­смотрели первую задачу из серии более сложных теорем о сим­метрии физических законов. Следующая теорема утверждает, что и направления координатных осей можно выбрать произ­вольно. Другими словами, если мы сооружаем где-то какое-то устройство и наблюдаем, как оно работает, а затем по соседству соорудим аналогичное устройство, но расположим его под лю­бым углом относительно первого, то будет ли второе устройство работать так же, как и первое? Вообще говоря, нет, если это, например, старые часы-ходики, известные еще нашим дедам. Если маятник ходиков расположен отвесно, они будут вели­колепно идти, но если их повернуть так, чтобы маятник уперся в стенку, верного времени они уже не покажут. Значит, нашу теорему нельзя применить к маятнику, если забыть о силе, ко­торая заставляет его качаться. Если мы все-таки верим в симметрию физических законов относительно вращений, то мы должны сделать какие-то вполне определенные предполо­жения о работе ходиков, например что для их работы важен не только часовой механизм, но и что-то, лежащее за его преде­лами, что-то, что следует обнаружить. Можно также предска­зать, что ходики будут идти по-разному, если они попадут куда-то в другое место по отношению к загадочному пока ис­точнику асимметрии (может быть, это Земля). Так и есть на самом деле. Мы знаем, что ходики на искусственном спутнике, например, вообще остановятся, ибо там отсутствует эффектив­ная сила, а на Марсе скорость их хода будет совсем иной. Маят­никовые часы содержат, помимо механизма, еще нечто вне их. Осознав этот факт, мы увидим, что вместе с ходиками нам придется повернуть и Землю. Но нам, конечно, незачем беспо­коиться — сделать это очень легко. Мы просто подождем минуту или две, и Земля сама повернется, а ходики затикают уже в новом положении так же весело, как и раньше. Пока мы пово­рачиваемся в пространстве, измеряемые нами углы изменяются тоже; эти изменения не причиняют особых беспокойств, по­скольку в новых условиях мы чувствуем себя точно так же, как и в старых. Здесь может скрываться источник ошибки; верно, что в новом, повернутом относительно старого положении законы остаются прежними, но неверно то, что во вращающейся системе координат справедливы те же законы, что и в покоящей­ся. Если проделать достаточно тонкие опыты, то можно уста­новить, что Земля вращается, но ни один из этих опытов не скажет нам, что Земля повернулась. Другими словами, мы не можем при помощи этих опытов установить ориентацию Земли, но можем сказать, что ориентация изменяется.

Обсудим теперь влияние ориентации системы координат на физические законы. Давайте посмотрим, не будут ли нам снова полезны Мик и Джо. Чтобы избежать ненужных сложностей, предположим, что эти молодые люди находятся в одной точке пространства (мы уже показали, что их системы координат можно перемещать). Пусть оси системы координат Мика по­вернуты относительно системы координат Джо на угол q, Обе системы координат изображены на фиг. 11.2, где мы ограничи­лись двумя измерениями.

Фиг. 11.2. Две координатные системы, ориентированные по-раз­ному.

Произвольная точка Р снабжается координатами (х, у) в системе Джо и (х', у') в системе Мика. Как и в предыдущем случае, начнем с того, что выразим коор­динаты х' и у' через х, у и q. Для этого опустим из Р перпенди­куляры на все четыре координатные оси и проведем АВ пер­пендикулярно PQ. Из чертежа ясно, что х' можно представить как сумму двух отрезков вдоль оси х', а у'— как разность двух отрезков вдоль АВ. Длины этих отрезков выражаются через х, у и 6; мы добавляем еще уравнение для третьей координаты:

х'=хcosq+sinq,

y'=ycosq -xsinq, (11.5)

z'=z.

Теперь (мы поступали так и раньше) установим соотношения между силами, измеряемыми двумя наблюдателями. Предполо­жим, что сила F, имеющая (с точки зрения Джо) составляющие Fxи Fy , действует на расположенную в точке Р на фиг. 11.2 частицу массы m. Для простоты сдвинем обе системы коорди­нат так, что начала их переместятся в точку Р, как показано на фиг. 11.3. Мик скажет нам, что сила, по его мнению, имеет составляющие Fx'и Fy'вдоль его осей.

Фиг. 11.3, Составляющие сил в двух системах.

Составляющая Fx, как и Fy, имеет составляющие вдоль обеих осей х' и у'. Чтобы выра­зить Fx'через Fx и Fy, сложим составляющие этих сил вдоль оси х'; точно таким же образом можно выразить и Fy'через Fх и Fy . В результате получим

Fx.=Fxcosq+Fysmq,

Fy.=Fycosq-Fxsmq, (11.6)

Fz' = Fz

Интересно отметить случайность, которая в дальнейшем ока­жется очень важной: формулы (11.5) и (11.6) для координат Р и составляющих F соответственно тождественны по форме. Как и раньше, предположим, что законы Ньютона справед­ливы в системе координат Джо и выражаются уравнениями (11.1). Снова возникает вопрос: может ли Мик пользоваться законами Ньютона, будут ли их предписания выполняться в повернутой системе координат? Другими словами, если пред­положить, что уравнения (11.5) и (11.6) дают связь между из­меряемыми величинами, то верно ли, что

Чтобы проверить эти уравнения, вычислим левые и правые части независимо, а затем сравним результаты. Чтобы вычис­лить левые части, умножим уравнения (11.5) на m и продиффе­ренцируем их дважды по времени, считая угол 9 постоянным. Это дает

Вычислим правые части уравнений (11.7), подставив (11.1] в уравнения (11.6). Получаем

Глядите! Правые части уравнений (11.8) и (11.9) тождест­венны; значит, если законы Ньютона верны в одной системе координат, то ими можно пользоваться и в другой системе. Эти рассуждения заставляют нас сделать некоторые важные выводы: во-первых, никто не может утверждать, что избранная им система координат единственна, она может быть, конечно, более удобной при решении частных задач. Например, удобно, но не обязательно взять направление силы тяжести за одну из осей координат. Во-вторых, это означает, что любой механизм, если только он является самостоятельным устройством и об­ладает всем необходимым для создания силы, будет работать одинаково, как бы его ни повернули.

§ 4. Векторы

Насколько нам известно сейчас, не только законы Ньютона, но и все физические законы обладают двумя свойствами, кото­рые называют инвариантностью (или симметрией) относительно перемещений и поворотов координатных осей. Эти свойства столь важны, что для учета их при изучении физических зако­нов была разработана специальная математическая техника.

Решение поставленных в предыдущих параграфах задач по­требовало довольно длинных расчетов. Чтобы свести их к ми­нимуму, изобретен могучий математический аппарат. Эта си­стема, называемая векторным анализом, определила название главы, хотя в ней, собственно говоря, речь идет о симметрии физических законов. Конечно, можно получить искомый ре­зультат, поступая так, как было описано раньше, но, чтобы облегчить и ускорить нашу задачу, мы применяем технику век­торного анализа.

Заметим, что в физике важно знать величины двух типов (на самом деле их больше двух, но давайте начнем с двух). Величины первого типа, например число картофелин в мешке, мы будем называть обыкновенными числами, или скалярами. Еще одним примером такой величины может служить темпе­ратура. Другие очень важные в физике величины имеют на­правление, это, например, скорость; мы должны задать не только быстроту перемещения тела, но и путь, по которому оно движется. Импульс и сила тоже имеют направление, как и смеще­ние: когда кто-нибудь делает шаг, можно сказать не только, как далеко он шагнул, но и куда он шагает, т. е. определить направление его движения.


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


1. Современная наука о природе, законы механики отзывы

Отзывы читателей о книге 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.