My-library.info
Все категории

Мичио Каку - Физика невозможного

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Мичио Каку - Физика невозможного. Жанр: Физика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Физика невозможного
Автор
Издательство:
-
ISBN:
-
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
233
Текст:
Ознакомительная версия
Читать онлайн
Мичио Каку - Физика невозможного

Мичио Каку - Физика невозможного краткое содержание

Мичио Каку - Физика невозможного - описание и краткое содержание, автор Мичио Каку, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Еще совсем недавно нам трудно было даже вообразить сегодняшний мир привычных вещей. Какие самые смелые прогнозы писателей-фантастов и авторов фильмов о будущем имеют шанс сбыться у нас на глазах? На этот вопрос пытается ответить Мичио Каку, американский физик японского происхождения и один из авторов теории струн. Из книги вы узнаете, что уже в ХХI в., возможно, будут реализованы силовые поля, невидимость, чтение мыслей, связь с внеземными цивилизациями и даже телепортация и межзвездные путешествия.

Физика невозможного читать онлайн бесплатно

Физика невозможного - читать книгу онлайн бесплатно, автор Мичио Каку
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

3 и 4. Сильные и слабые ядерные взаимодействия. Слабое взаимодействие — это сила радиоактивно­го распада, та, что разогревает радиоактивное ядро Земли. Эта сила стоит за извержениями вулканов, зем­летрясениями и дрейфом континентальных плит. Силь­ное взаимодействие не дает рассыпаться ядрам атомов; оно обеспечивает энергией солнце и звезды и отвечает за освещение Вселенной. Проблема в том, что ядерное взаимодействие работает только на очень маленьких расстояниях, в основном в пределах атомного ядра. Оно так прочно связано со свойствами самого ядра, что управлять им чрезвычайно трудно. В настоящее время нам известно только два способа влиять на это взаимо­действие: мы можем разбить субатомную частицу на части в ускорителе или взорвать атомную бомбу.

Хотя защитные поля в научной фантастике и не подчиня­ются известным законам физики, все же существуют лазейки, которые в будущем, вероятно, сделают создание силового поля возможным. Во-первых, существует, возможно, пятый вид фун­даментального взаимодействия, который никому до сих пор не удалось увидеть в лаборатории. Может оказаться, к примеру, что это взаимодействие работает только на расстояниях от не­скольких дюймов до фута — а не на астрономических расстоя­ниях. (Правда, первые попытки обнаружить пятый вид взаимо­действия дали отрицательные результаты.)

Во-вторых, нам, возможно, удастся заставить плазму ими­тировать некоторые свойства силового поля. Плазма — это «четвертое состояние вещества». Три первые, привычные нам состояния вещества, — твердое, жидкое и газообразное; тем не менее самой распространенной формой вещества во вселенной является плазма: газ, состоящий из ионизированных атомов. Атомы в плазме не связаны между собой и лишены электро­нов, а потому обладают электрическим зарядом. Ими можно без труда управлять при помощи электрического и магнитного полей.

Видимое вещество вселенной существует по большей ча­сти в форме различного рода плазмы; из нее образованы солн­це, звезды и межзвездный газ. В обычной жизни мы почти не сталкиваемся с плазмой, потому что на Земле это явление редкое; тем не менее плазму можно увидеть. Для этого доста­точно взглянуть на молнию, солнце или экран плазменного телевизора.

Плазменные окна

Как уже отмечалось выше, если нагреть газ до достаточно вы­сокой температуры и получить таким образом плазму, то при помощи магнитного и электрического полей можно будет ее удерживать и придавать ей форму. К примеру, плазме можно придать форму листа или оконного стекла. Более того, такое «плазменное окно» можно использовать в качестве перегород­ки между вакуумом и обычным воздухом. В принципе, таким образом можно было бы удерживать воздух внутри космическо­го корабля, не давая ему улетучиться в пространство; плазма в этом случае образует удобную прозрачную оболочку, границу между открытым космосом и кораблем.

В сериале «Звездный путь» силовое поле используется, в частности, для того, чтобы изолировать отсек, где находится и откуда стартует небольшой космический челнок, от космиче­ского пространства. И это не просто хитрая уловка, призванная сэкономить деньги на декорациях; такая прозрачная невиди­мая пленка может быть создана.

Плазменное окно придумал в 1995 г. физик Эди Гершкович в Брукхейвенской национальной лаборатории (Лонг-Айленд, штат Нью-Йорк). Это устройство было разработано в процессе решения другой задачи — задачи сварки металлов при помощи электронного луча. Ацетиленовая горелка сварщика плавит ме­талл потоком раскаленного газа, а затем уже соединяет куски металла воедино. При этом известно, что пучок электронов спо­собен сваривать металлы быстрее, чище и дешевле, чем полу­чается при обычных методах сварки. Главная проблема метода электронной сварки состоит в том, что осуществлять ее необхо­димо в вакууме. Это требование создает большие неудобства, поскольку означает сооружение вакуумной камеры — разме­ром, возможно, с целую комнату.

Для решения этой проблемы д-р Гершкович изобрел плаз­менное окно. Это устройство размером всего 3 фута в высоту и 1 фут в диаметре; оно нагревает газ до температуры 6500 °С и тем самым создает плазму, которая сразу же попадает в ловуш­ку электрического и магнитного полей. Частицы плазмы, как частицы любого газа, оказывают давление, которое не дает воз­духу ворваться и заполнить собой вакуумную камеру. (Если ис­пользовать в плазменном окне аргон, он испускает голубоватое свечение, совсем как силовое поле в «Звездном пути».)

Плазменное окно, очевидно, найдет широкое применение в космической отрасли и промышленности. Даже в промыш­ленности для микрообработки и сухого травления часто необ­ходим вакуум, но применение его в производственном процес­се может оказаться очень дорогим. Но теперь, с изобретением плазменного окна, удерживать вакуум одним нажатием кнопки станет несложно и недорого.

Но можно ли использовать плазменное окно как непрони­цаемый щит? Защитит ли оно от выстрела из пушки? Можно вообразить появление в будущем плазменных окон, обладаю­щих гораздо большей энергией и температурой, достаточной для испарения попадающих в него объектов. Но для создания более реалистичного силового поля с известными по фанта­стическим произведениям характеристиками потребуется многослойная комбинация нескольких технологий. Возможно, каждый слой сам по себе не будет достаточно прочным, чтобы остановить пушечное ядро, но вместе нескольких слоев может оказаться достаточно.

Попробуем представить себе структуру такого силового поля. Внешний слой, к примеру сверхзаряженное плазменное окно, разогретое до температуры, достаточной для испарения металлов. Вторым слоем может оказаться завеса из высоко­энергетических лазерных лучей. Такая завеса из тысяч перекре­щивающихся лазерных лучей создавала бы пространственную решетку, которая нагревала бы проходящие через нее объекты и эффективно испаряла их. Более подробно мы поговорим о ла­зерах в следующей главе.

Далее, за лазерной завесой, можно вообразить себе про­странственную решетку из «углеродных нанотрубок» — кро­хотных трубочек, состоящих из отдельных атомов углерода, со стенками толщиной в один атом. Таким трубки во много раз прочнее стали. На данный момент самая длинная из получен­ных в мире углеродных нанотрубок имеет длину всего около 15 мм, но можно уже предвидеть день, когда мы сможем созда­вать углеродные нанотрубки произвольной длины. Предполо­жим, что из углеродных нанотрубок можно будет сплести про­странственную сеть; в этом случае мы получим чрезвычайно прочный экран, способный отразить большинство объектов. Экран этот будет невидим, так как каждая отдельная нанотрубка по толщине сравнима с атомом, но пространственная сеть из углеродных нанотрубок превзойдет по прочности любой другой материал.

Итак, мы имеем основания предположить, что сочетание плазменного окна, лазерной завесы и экрана из углеродных нанотрубок может послужить основой для создания почти не­проницаемой невидимой стены.

Но даже такой многослойный щит будет не в состоянии продемонстрировать все свойства, которые научная фанта­стика приписывает силовому полю. Так, он будет прозрачен, а значит, не сможет остановить лазерный луч. В битве с приме­нением лазерных пушек наши многослойные щиты окажутся бесполезными.

Чтобы остановить лазерный луч, щит должен будет кро­ме перечисленного обладать сильно выраженным свойством «фотохроматичности», или переменной прозрачности. В на­стоящее время материалы с такими характеристиками ис­пользуются при изготовлении солнечных очков, способных затемняться при воздействии УФ-излучения. Переменная прозрачность материала достигается за счет использования молекул, которые могут существовать по крайней мере в двух состояниях. При одном состоянии молекул такой матери­ал прозрачен. Но под воздействием УФ-излучения молекулы мгновенно переходят в другое состояние и материал теряет прозрачность.

Возможно, когда-нибудь мы сможем при помощи нанотехнологии получить вещество, прочное, как углеродные нанотрубки, и способное менять свои оптические свойства под воз­действием лазерного луча. Щит из такого вещества сможет останавливать не только потоки частиц или орудийные снаряды, но и лазерный удар. В настоящее время, однако, не существует материалов с переменной прозрачностью, способных остано­вить лазерный луч.

Магнитная левитация

В научной фантастике силовые поля выполняют еще одну функ­цию, кроме отражения ударов из лучевого оружия, а именно служат опорой, которая позволяет преодолевать силу притя­жения. В фильме «Назад в будущее» Майкл Фокс катается на «ховерборде», или «парящей доске»; эта штука во всем напоми­нает привычный скейтборд, вот только «ездит» по воздуху, над поверхностью земли. Физические законы — такие, какими мы их знаем на сегодняшний день, — не позволяют реализовать подобное подобное антигравитационное устройство (как мы увидим в главе 10). Но можно представить себе в будущем создание других устройств — парящих досок и парящих автомобилей на магнитной подушке; эти машины позволят нам без труда поднимать и удерживать на весу крупные объекты. В будущем, если «сверхпроводимость при комнатной температуре» станет доступной реальностью, человек сможет поднимать в воздух предметы, используя возможности магнитных полей.

Ознакомительная версия.


Мичио Каку читать все книги автора по порядку

Мичио Каку - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Физика невозможного отзывы

Отзывы читателей о книге Физика невозможного, автор: Мичио Каку. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.