= m2v2/t, или m1a1 = m2a2. С учетом (4.8) получаем:
F1 = F2 (9.3). Уравнение (9.3) принято называть третьим законом Ньютона. Так как он получен из закона сохранения импульса, его следует считать независимым от второго закона Ньютона. Это справедливо, так как второй закон был выведен из закона сохранения энергии. Законы Ньютона составляют основу классической механики.
Принято считать, что классическая механика стоит, как на трёх китах, на трёх законах Ньютона. Это не совсем так. На самом деле механика основана на четырёх законах Ньютона. Рассмотрим их подробнее.
Свой первый закон (закон инерции) Ньютон записал так: «Если на тело не действуют другие тела, то скорость данного тела не изменяется». Такое тело ещё называют «свободным». Заметим, свободным тело может быть только в глубоком космосе, где притяжение далеких звёзд практически отсутствует. В наши дни первый закон Ньютона формулируют по-другому: «Существуют тела отсчёта, относительно которых свободное тело перемещается с постоянной скоростью». Такое утверждение называется постулатом. Почему закон инерции понадобилось преобразовывать в постулат? Причины две. Во-первых, мы не никогда не сможем избавиться от притяжения Земли, хотя и верим, что за пределами Солнечной системы свободное тело будет двигаться по инерции миллионы лет с неизменной скоростью. Во-вторых, для измерения скорости необходимо знать длину пути и время в пути. Если время можно измерить секундомером, то для измерения длины пути необходимо иметь нулевую отметку. Тело, на котором сделана нулевая отметка, называют телом отсчёта. Из нулевой отметки проводят три воображаемые взаимно-перпендикулярные линии и размечают их на метры. Так получается виртуальная трехмерная координатная сетка.
Тело отсчета вместе с привязанной системой координат называют системой отсчёта. С учётом системы координат смысл постулата более ясен. Надо понимать, что в природе существуют системы отсчёта, относительно которых выполняется закон инерции – первый закон Ньютона. Такие системы принято называть инерциальными. Запомнить легко: в инерциальной системе выполняется закон инерции. Отсюда вытекает правило: если в некоторой системе отсчёта нарушается закон инерции (т. е. тело изменяет скорость без причины), значит, данная система отсчета не является инерциальной. Возникает вопрос, как выбирать инерциальную систему? Очевидно, если свободное тело движется с постоянной скоростью, значит, инерциальная система сама тоже должна двигаться с постоянной скоростью. Если тело движется с ускорением, его нельзя рассматривать в качестве инерциальной системы отсчёта.
Свой второй закон Ньютон записывал так: a =F/m (10.1). Он говорил, что ускорение тела пропорционально силе и обратно пропорционально массе. Отсюда следует, что если известна сила, ускорение тела вычислить легко. Но как измерить силу? Мы до сих пор не совсем понимаем, что такое сила (дать определение, это ещё не значит – понять), а уж придумать прибор для её измерения – вовсе непросто. Гораздо легче измерить ускорение: есть секундомер, есть рулетка. Поэтому в наши дни второй закон записывают так: F = ma (10.2). Второе уравнение равносильно первому, но применять его гораздо удобнее. Считается, что второй закон открыт опытным путем. Мы вывели уравнение (10.1) из закона сохранения энергии, который, в общем, тоже установлен на основании опытов. Заметим, что уравнение второго закона Ньютона верно только относительно инерциальной системы отсчёта. Если относительно некоторой системы отсчёта тело имеет ускорение без видимых причин, значит, данная система не является инерциальной.
§ 11. Другие два закона Ньютона
Ранее мы вывели закон сохранения импульса: P1 = P2 (11.1). Из уравнения (11.1) легко получается третий закон Ньютона: F1 = F2 (11.2). В стандартном учебнике третий закон читается так: сила действия F1 равна силе противодействия F2. Понять это не просто, поэтому в учебнике сразу следует картинка с тележкой, которую толкает рабочий. На этом учебном примере нам пытаются объяснить, чем сила противодействия тележки отличается от силы действия рабочего и почему она не может её уравновесить, хотя и равна ей. Используются термины, разъяснения, но понимания так и не наступает. Попробуем разобраться, в чём тут дело.
В нашем энергетическом подходе третий закон Ньютона вытекает из закона сохранения импульса (10.3). Это уравнение получено опытным путем. Оно практично, понятно, его ничем не опровергнуть. Нам не надо читать уравнение (11.1) в виде: «импульс действия равен импульсу противодействия». Это звучит бессмысленно. Мы знаем, что импульс сохраняется, как сохраняется энергия. И всё. Сложности не нужны, если они не помогают понять суть вещей.
Остаётся вопрос, откуда берётся «сила противодействия» F2? Очень просто. Она появляется в системе отсчета, связанной с тележкой, которая движется с ускорением. Такую тележку нельзя брать в качестве системы отсчёта, это нарушение постулата об инерциальной системе. Так как законы Ньютона верны только в инерциальной системе отсчёта, неудивительно, что при нарушении второго закона возникает иллюзия силы, которая не связана ни с каким телом. Эту силу Фейнман называл фиктивной, так как она существует только в воображении. Реальная сила, писал Фейнман, должна иметь источник – реальное тело. Этот принцип будет более понятным, если мы рассмотрим ускоренное движение тела относительно системы отсчета, привязанной к неподвижным звёздам.
Представим, что в космос запущена ракета с космонавтом на борту. Относительно неподвижных звёзд сила F1 тяги двигателя придаёт ракете ускорение a = F1/m, где m – масса ракеты. При этом сохраняется полный импульс: легкий горячий газ с огромной скоростью отбрасывается назад, массивная ракета с малой скоростью летит вперед, т. е. (с учетом знаков) Р1 = – Р2. Мы видим, что относительно неподвижных звёзд выполняется третий закон Ньютона.
Представим теперь, что забыв требование постулата об инерциальной системе отсчета, космонавт ведет наблюдение внутри ракеты, движущейся с ускорением. Космонавт чувствует, что давит на кресло с силой F2 = -am, где m – масса космонавта. Он называет её силой инерции. Но космонавт не работает, не машет крыльями, он просто спит. Космонавт не тратит энергию, в отличие от ракеты, которая сжигает топливо. Он давит на кресло только потому, что кресло толкает его с ускорением. Стоит выключить двигатель, космонавт сразу теряет вес. На кресло он уже не давит, он даже парит в воздухе. В этом сущность «силы» инерции. За ней не стоит источник энергии, работать она никогда не будет.
Следует заметить, для некоторых задач уравнения движения имеет более простой вид, если их записать относительно неинерциальной системы отсчёта. Для упрощения расчётов можно пойти на этот шаг, но никогда нельзя забывать, что это чисто математический приём, а «сила инерции» существует только на бумаге.
Четвёртым законом Ньютона является закон всемирного тяготения: F = GMm/R2. Жаль, что в классической механике этот закон не имеет порядкового номера. Это настоящий природный закон, он показывает, что гравитация существует вокруг любого массивного тела. Для поля тяготения Земли закон всемирного тяготения имеет вид: P = mg. Мы с удовольствием поставили бы этот закон на второе место, но оно уже занято.
Возникает вопрос: зачем нужны законы Ньютона? Дело в том, что человек превращает энергию в полезную работу при помощи машин и механизмов. Машиной называют устройство для преобразования энергии любого вида в механическую работу. В составе любой машины имеются механизмы. Механизм – это устройство для преобразования движения одного вида в другое. Например, подъёмный кран – это машина с электродвигателем, который превращает энергию электричества в механическую работу. Кран оборудован лебёдкой. Лебёдка – это механизм для преобразования вращения вала электродвигателя в поступательное движение каната с захватом для груза. Чтобы успешно строить машины и механизмы, надо хорошо знать законы механики.
Чаще всего энергию передают от одного тела другому при помощи специального рабочего тела (механизма). Говорят, что при этом рабочее тело выполняет работу. В идеальном случае механизм передает энергию без потерь. В реальном мире всегда существуют потери энергии. Это означает, что источник отдаёт больше энергии, чем получает приемник.
Работу принято обозначать символом А.
Механическую работу определяют как произведение силы на перемещение: A = Fs (12.1). Значит, работа измеряется в джоулях: [A] = [Fs] = [Нм] = Дж. Энергия тоже измеряется в джоулях, но между энергией и работой мало общего. Энергия – это природная величина, которой обладает любое тело. Энергию можно запасать. Например, дамоклов меч можно подвесить и он будет иметь запас потенциальной энергии. В отличие от энергии, работа всегда связана с движением. Представим, ракетный двигатель испытывают на стенде. Сила тяги действует, но перемещение равно нулю, ведь стенд неподвижен. Из (12.1) следует, что работа тоже равна нулю, хотя прибор может показать, что двигатель развивает силу тяги F = 10 кН. В чём тут смысл? Особого смысла нет, просто принято считать, что работа равна энергии, отданной источником другому телу, например, стенду. Но у стенда не изменяется ни потенциальная энергия, ни кинетическая. Стенд не приобрел ничего, следовательно, работа A=Fs тоже равна нулю. В этом смысле можно написать: А = Е.