Но надо еще посмотреть, действительно ли работа обхода вокруг маленького треугольника тоже равна нулю. Увеличим один из треугольников (см. фиг. 13.4). Равны ли работы по пути от а к b и от b к с работе, совершаемой, когда идешь напрямик от а к с? Пусть сила действует в каком-то направлении. Расположим треугольник так, чтобы у его катета bc было как раз такое направление. Предположим также, что сам треугольник так мал, что сила всюду на нем постоянна. Какова работа на отрезке ас? Она равна
(поскольку сила постоянна). Теперь определим работу на двух катетах. На вертикальном катете ab сила перпендикулярна к ds, так что работа равна нулю. На горизонтальном катете bc
Мы убеждаемся таким образом, что работа обхода по бокам маленького треугольника такая же, как и по склону, потому что scosq равно х. Мы уже показали прежде, что работа при движении по зазубринам (как на фиг. 13.3) равна нулю, а теперь видим, что производимая работа одинакова, независимо от того, движемся ли мы по зазубринам или срезаем путь между ними (если только зазубрины малы, но ведь ничто не мешает сделать их такими); поэтому работа обхода по любому замкнутому пути в поле тяготения равна нулю.
Это очень примечательный результат. Благодаря ему нам становятся известны такие подробности о движении планет, о которых мы раньше и не догадывались. Выясняется, что когда планета вертится вокруг Солнца одна, без спутников и в отсутствие каких-либо других сил, то квадрат ее скорости минус некоторая константа, деленная на расстояние до Солнца, вдоль орбиты не меняется. Например, чем ближе планета к Солнцу, тем быстрее она движется. Но насколько быстрее? А вот насколько: если вместо движения вокруг Солнца вы толкнете ее к Солнцу с той же скоростью и подождете, пока она не упадет на нужное расстояние, то приобретенная скорость будет как раз такой, какой планета обладает на этой орбите, потому что получился просто другой пример сложного пути обхода. Если планета вернется по такому пути обратно, ее кинетическая энергия окажется прежней. Поэтому независимо от того, движется ли она по настоящей невозмущенной орбите или же по сложному пути (но без трения), кинетическая энергия в момент возвращения на орбиту оказывается как раз такой, какой нужно.
Значит, когда мы проводим численный анализ движения планеты по орбите (как мы делали раньше), мы можем проверить, не сделали ли заметных ошибок при расчете этой постоянной величины, энергии, на каждом шаге; она не должна меняться. Для орбиты, приведенной в табл. 9.2 (стр. 170), энергия меняется примерно на 1,5% с начала движения до конца. Почему? То ли потому, что в численном методе мы пользовались конечными приращениями, то ли из-за мелких погрешностей в арифметике.
Рассмотрим энергию в другой задаче: задаче о массе, подвешенной на пружине. Когда отклоняют массу от положения равновесия, сила, восстанавливающая ее положение, пропорциональна смещению. Можно ли в этих условиях вывести закон сохранения энергии? Да; потому что работа, совершаемая этой силой, равна
Значит, у массы, подвешенной на пружине, сумма кинетической энергии ее колебаний и
1/2 kx2постоянна. Посмотрим, как это происходит. Оттянем массу вниз; она неподвижна и скорость ее равна нулю, но х не равно нулю, теперь величина х максимальна, так что имеется и некоторый запас энергии (потенциальной). Отпустим теперь массу: начнется какой-то процесс (в детали мы не вникаем), но в любое мгновение кинетическая плюс потенциальная энергии будут постоянны. Например, когда масса проходит через точку первоначального равновесия, то х=0, но тогда значение v2 наибольшее, и чем больше величина x2, тем меньше v2 и т. д. Значит, во время колебаний соблюдается равновесие между величинами x2 и r2. Мы получили, таким образом, новое правило: потенциальная энергия пружины равна l/2 kx2, если сила равна -kx.
§ 3. Сложение энергий
Перейдем теперь к более общему случаю и рассмотрим, что произойдет, если тел много. Предположим, что имеется несколько тел; пронумеруем их: i = l, 2, 3, ... и пусть все они притягивают друг друга. Что тогда произойдет? Можно доказать, что если сложить кинетические энергии всех тел и добавить сюда сумму (по всем парам частиц) их взаимных потенциальных энергий тяготения —GMm/rij, то все вместе даст постоянную:
Как же это доказать? Мы продифференцируем обе стороны по времени и докажем, что получится нуль. При дифференцировании 1/2тiv2iмы получим производные скорости — силы [как в (13.5)], а потом эти силы заменим их величиной, известной нам
из закона тяготения, и увидим в конце концов, что останется как раз производная по времени от
Начинаем доказательство. Производная кинетической энергии по времени есть
Производная по времени от потенциальной энергии есть
но
так что
потому что rij=-rji, хотя rij=r}i. Итак,
Теперь внимательно посмотрим, что значит
и означает, что i принимает по порядку
все значения i=1, 2, 3,..., и для каждого i индекс j принимает все значения, кроме i. Если, например, i = 3, то j принимает значения 1, 2, 4, ....
С другой стороны, в (13.16) S означает, что каждая пара i и j встречается лишь однажды. Скажем, частицы 1 и 3 дают только один член в сумме. Чтобы отметить это, можно договориться, что i принимает значения 1, 2, 3, ..., а j для каждого i — только значения, большие чем i Если, скажем, i=3, то j равно 4, 5, 6, .... Но вспомним, что каждая пара i, j дает два слагаемых в сумме, одно с vi, а другое с vj, и что оба эти члена выглядят так же, как член в уравнении (13.14) [но только в последнем в сумму входят все значения i и j (кроме i=j)]. В уравнениях (13.16) и (13.15) член за членом совпадут по величине. Знаки их, однако, будут противоположны, так что производная по времени от суммы потенциальной и кинетической энергий действительно равна нулю. Итак, мы видим, что и в системе многих тел кинетическая энергия составляется из суммы энергий отдельных тел и что потенциальная энергия тоже состоит из взаимных потенциальных энергий пар частиц. Почему она складывается из энергий пар? Это можно уяснить себе следующим образом: положим, мы хотим найти всю работу, которую нужно совершить, чтобы развести тела на определенные расстояния друг от друга. Можно это сделать не за один раз, а постепенно, доставляя их одно за другим из бесконечности, где на них никакие силы не влияли. Сперва мы приведем тело 1, на что работы не потребуется, потому что, пока нет других тел, силы отсутствуют. Доставка тела 2 потребует работы W12 =-Gm1m2/ri2. И вот теперь самый существенный момент: мы доставляем тело 3 в точку 3. В любой момент сила, действующая на 3, слагается из двух частей: из силы, действующей со стороны 1, и силы со стороны 2. Значит, и вся произведенная работа равна сумме работ каждой из сил, потому что раз F3 разбивается на сумму сил
F3= F13+F2
то работа равна
Стало быть, вся работа равна сумме работ, произведенных против силы 1 и против силы 2, как если бы они действовали независимо. Продолжая рассуждать таким образом, мы увидим, что полная работа, которую необходимо выполнить, чтобы собрать данную конфигурацию тел, в точности равна значению (13.14) для потенциальной энергии. Именно из-за того, что тяготение подчиняется принципу наложения сил, можно потенциальную энергию представить в виде суммы по всем парам частиц.
§ 4. Поле тяготения больших тел
Теперь рассчитаем поля, встречающиеся во многих физических задачах, когда речь идет о распределении масс. Мы пока не рассматривали распределения масс, а занимались только отдельными частицами. Но интересно рассчитать и поля, образуемые более чем одной частицей. Для начала найдем силу притяжения со стороны плоского пласта вещества бесконечной протяженности. Сила притяжения единичной массы в данной точке Р (фиг. 13.5), конечно, направлена к плоскости. Расстояние от точки до плоскости есть a, а масса единицы площади этой плоскости есть m., где m=m/4pa2 — поверхностная плотность массы. (Вообще площадь поверхности шарового пояса пропорциональна его высоте.) Поэтому потенциальная энергия притяжения массы dm есть