My-library.info
Все категории

Ричард Фейнман - 1. Современная наука о природе, законы механики

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 1. Современная наука о природе, законы механики. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
1. Современная наука о природе, законы механики
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
178
Читать онлайн
Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

Ричард Фейнман - 1. Современная наука о природе, законы механики - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

1. Современная наука о природе, законы механики читать онлайн бесплатно

1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман

Но надо еще посмотреть, действительно ли работа обхода вокруг маленького треугольника тоже равна нулю. Увеличим один из треугольников (см. фиг. 13.4). Равны ли работы по пути от а к b и от b к с работе, совершаемой, когда идешь напрямик от а к с? Пусть сила действует в каком-то направлении. Расположим треугольник так, чтобы у его катета bc было как раз такое направление. Предположим также, что сам треугольник так мал, что сила всюду на нем постоянна. Какова работа на отрезке ас? Она равна

(поскольку сила постоянна). Теперь определим работу на двух катетах. На вертикальном катете ab сила перпендикулярна к ds, так что работа равна нулю. На горизонтальном катете bc

Мы убеждаемся таким образом, что работа обхода по бокам ма­ленького треугольника такая же, как и по склону, потому что scosq равно х. Мы уже показали прежде, что работа при дви­жении по зазубринам (как на фиг. 13.3) равна нулю, а теперь видим, что производимая работа одинакова, независимо от того, движемся ли мы по зазубринам или срезаем путь между ними (если только зазубрины малы, но ведь ничто не мешает сделать их такими); поэтому работа обхода по любому замкну­тому пути в поле тяготения равна нулю.

Это очень примечательный результат. Благодаря ему нам становятся известны такие подробности о движении планет, о которых мы раньше и не догадывались. Выясняется, что когда планета вертится вокруг Солнца одна, без спутников и в отсут­ствие каких-либо других сил, то квадрат ее скорости минус некоторая константа, деленная на расстояние до Солнца, вдоль орбиты не меняется. Например, чем ближе планета к Солнцу, тем быстрее она движется. Но насколько быстрее? А вот на­сколько: если вместо движения вокруг Солнца вы толкнете ее к Солнцу с той же скоростью и подождете, пока она не упадет на нужное расстояние, то приобретенная скорость будет как раз такой, какой планета обладает на этой орбите, потому что полу­чился просто другой пример сложного пути обхода. Если пла­нета вернется по такому пути обратно, ее кинетическая энергия окажется прежней. Поэтому независимо от того, движется ли она по настоящей невозмущенной орбите или же по сложному пути (но без трения), кинетическая энергия в момент возвраще­ния на орбиту оказывается как раз такой, какой нужно.

Значит, когда мы проводим численный анализ движения пла­неты по орбите (как мы делали раньше), мы можем проверить, не сделали ли заметных ошибок при расчете этой постоянной величины, энергии, на каждом шаге; она не должна менять­ся. Для орбиты, приведенной в табл. 9.2 (стр. 170), энергия меняется примерно на 1,5% с начала движения до конца. Почему? То ли потому, что в численном методе мы пользова­лись конечными приращениями, то ли из-за мелких погрешнос­тей в арифметике.

Рассмотрим энергию в другой задаче: задаче о массе, подве­шенной на пружине. Когда отклоняют массу от положения рав­новесия, сила, восстанавливающая ее положение, пропорцио­нальна смещению. Можно ли в этих условиях вывести закон сохранения энергии? Да; потому что работа, совершаемая этой силой, равна

Значит, у массы, подвешенной на пружине, сумма кинетической энергии ее колебаний и

1/2 kx2постоянна. Посмотрим, как это происходит. Оттянем массу вниз; она неподвижна и скорость ее равна нулю, но х не равно нулю, теперь величина х максималь­на, так что имеется и некоторый запас энергии (потенциальной). Отпустим теперь массу: начнется какой-то процесс (в детали мы не вникаем), но в любое мгновение кинетическая плюс потен­циальная энергии будут постоянны. Например, когда масса проходит через точку первоначального равновесия, то х=0, но тогда значение v2 наибольшее, и чем больше величина x2, тем меньше v2 и т. д. Значит, во время колебаний соблюдается равновесие между величинами x2 и r2. Мы получили, таким обра­зом, новое правило: потенциальная энергия пружины равна l/2 kx2, если сила равна -kx.

§ 3. Сложение энергий

Перейдем теперь к более общему случаю и рассмотрим, что произойдет, если тел много. Предположим, что имеется несколь­ко тел; пронумеруем их: i = l, 2, 3, ... и пусть все они притяги­вают друг друга. Что тогда произойдет? Можно доказать, что если сложить кинетические энергии всех тел и добавить сюда сумму (по всем парам частиц) их взаимных потенциальных энер­гий тяготения —GMm/rij, то все вместе даст постоянную:

Как же это доказать? Мы продифференцируем обе стороны по времени и докажем, что получится нуль. При дифференцирова­нии 1/2тiv2iмы получим производные скорости — силы [как в (13.5)], а потом эти силы заменим их величиной, известной нам

из закона тяготения, и увидим в конце концов, что останется как раз производная по времени от

Начинаем доказательство. Производная кинетической энергии по времени есть

Производная по времени от потенциальной энергии есть

но

так что

потому что rij=-rji, хотя rij=r}i. Итак,

Теперь внимательно посмотрим, что значит

и означает, что i принимает по порядку

все значения i=1, 2, 3,..., и для каждого i индекс j принимает все значения, кроме i. Если, например, i = 3, то j принимает зна­чения 1, 2, 4, ....

С другой стороны, в (13.16) S означает, что каждая пара i и j встречается лишь однажды. Скажем, частицы 1 и 3 дают только один член в сумме. Чтобы отметить это, можно договориться, что i принимает значения 1, 2, 3, ..., а j для каждого i — только значения, большие чем i Если, скажем, i=3, то j равно 4, 5, 6, .... Но вспомним, что каждая пара i, j дает два слагаемых в сумме, одно с vi, а другое с vj, и что оба эти члена выглядят так же, как член в уравнении (13.14) [но только в последнем в сумму входят все значения i и j (кроме i=j)]. В уравнениях (13.16) и (13.15) член за членом совпадут по величине. Знаки их, однако, будут противоположны, так что производная по времени от суммы потенциальной и кинетической энергий действительно равна нулю. Итак, мы видим, что и в системе многих тел кинети­ческая энергия составляется из суммы энергий отдельных тел и что потенциальная энергия тоже состоит из взаимных потен­циальных энергий пар частиц. Почему она складывается из энер­гий пар? Это можно уяснить себе следующим образом: положим, мы хотим найти всю работу, которую нужно совершить, чтобы развести тела на определенные расстояния друг от друга. Мож­но это сделать не за один раз, а постепенно, доставляя их одно за другим из бесконечности, где на них никакие силы не влияли. Сперва мы приведем тело 1, на что работы не потребуется, потому что, пока нет других тел, силы отсутствуют. Доставка тела 2 потребует работы W12 =-Gm1m2/ri2. И вот теперь самый суще­ственный момент: мы доставляем тело 3 в точку 3. В любой мо­мент сила, действующая на 3, слагается из двух частей: из си­лы, действующей со стороны 1, и силы со стороны 2. Значит, и вся произведенная работа равна сумме работ каждой из сил, потому что раз F3 разбивается на сумму сил

F3= F13+F2

то работа равна

Стало быть, вся работа равна сумме работ, произведенных про­тив силы 1 и против силы 2, как если бы они действовали неза­висимо. Продолжая рассуждать таким образом, мы увидим, что полная работа, которую необходимо выполнить, чтобы собрать данную конфигурацию тел, в точности равна значению (13.14) для потенциальной энергии. Именно из-за того, что тяготение подчиняется принципу наложения сил, можно потенциальную энергию представить в виде суммы по всем парам частиц.

§ 4. Поле тяготения больших тел

Теперь рассчитаем поля, встречающиеся во многих физиче­ских задачах, когда речь идет о распределении масс. Мы пока не рассматривали распределения масс, а занимались только отдель­ными частицами. Но интересно рассчитать и поля, образуемые более чем одной частицей. Для начала найдем силу притяжения со стороны плоского пласта вещества бесконечной протяженности. Сила притяжения единичной массы в данной точке Р (фиг. 13.5), конечно, направлена к плоскости. Расстояние от точки до пло­скости есть a, а масса единицы площади этой плоскости есть m., где m=m/4pa2 — поверхностная плотность массы. (Вообще пло­щадь поверхности шарового пояса пропорциональна его вы­соте.) Поэтому потенциальная энергия притяжения массы dm есть


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


1. Современная наука о природе, законы механики отзывы

Отзывы читателей о книге 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.