Настоящая сенсация произошла в 1986 г., когда швейцарские физики Д. Беднорц и К. Мюллер объявили о создании ими сверхпроводников при температурах, выше температуры кипения жидкого азота (77,4 К!). Сообщение это было настолько шокирующим, что научные журналы поначалу отказывались его печатать.
Жидкий азот чрезвычайно дешев, как говорят, даже дешевле лимонада, он является побочным продуктом при производстве кислорода, и его просто нередко выливают, выбрасывают. Получить сверхпроводимость при «азотных» температурах было мечтой исследователей и инженеров, казалось, неосуществимой. Отсюда и тот бум, который поднялся после этого сообщения. Сейчас ученые уже перешли от восторгов к делу, начались планомерные исследования в области высокотемпературной сверхпроводимости, в том числе и у нас в стране. В результате получены материалы, приобретающие свойство сверхпроводимости при 100—110 К. Были сообщения о материалах, теряющих электросопротивление почти при обычных температурах нашей средней полосы – от – 20 до +10 °C. Но, как оказалось, это была не сверхпроводимость, а просто сильное, в сотни и тысячи раз, снижение сопротивления, что хоть и хорошо, но коренным образом отлично от сверхпроводимости.
Что же это за материалы, обладающие столь заманчивыми свойствами?
В отличие от низкотемпературных сверхпроводников это не металлы, а керамика, чаще всего на основе элементов иттрия и бария. Сама процедура изготовления сверхпроводящей керамики необыкновенно проста и, как выразился один известный физик, «удивительно дуракоустойчива».
Сами компоненты, входящие в состав новых сверхпроводников, хотя и называются редкоземельными, отнюдь не редкость. Они входят в состав полиметаллических руд, но за отсутствием спроса до сих пор оттуда не извлекались, а шли в отвал. Так что теперь нужно наладить переработку отвалов этих руд.
Где же можно применить новые сверхпроводники? С силовыми применениями сверхпроводников пока придется подождать. Зато уникальные свойства сверхпроводимости, не связанные с большими токами, можно уже начинать использовать. Например, в микроэлектронике и вычислительной технике новые сверхпроводники можно применять уже прямо сейчас, поскольку большие токи там не требуются.
Попытки использовать сверхпроводники для нужд микроэлектроники и вычислительной техники были и раньше, разработали даже некоторые элементы (сверхпроводящий ключ, сверхпроводящая ячейка памяти – криотрон), но широкому их распространению мешала высокая стоимость охлаждения до рабочей температуры. Необходимость же охлаждать до азотной температуры проблемы не представляет. Более того, это даже полезно, поскольку одновременно снижается уровень шумов.
Природа своими подарками еще не полностью искупила высокомерную ошибку Кеезома и наше преклонение перед авторитетами науки. Мы можем с уверенностью ждать скорого появления уже «силовых» сверхпроводников, работающих при обычных для нас температурах. Что мы можем от этого получить, пока даже трудно себе представить!
Как Фарадей перехитрил Ампера?
Тут нам снова надо вернуться в XIX в., к знаменитым опытам Фарадея (1791—1867). Сразу после опытов Эрстеда, где электричество порождало магнетизм, Фарадей записал в своем дневнике девиз: «Превратить магнетизм в электричество». 11 лет Фарадею это не удавалось. Много лет подряд ученый постоянно носил с собой спираль из медной проволоки и железный сердечник, проделывая с этими предметами самые невероятные манипуляции. Но ничего путного не выходило, и в его лабораторном журнале «О возбуждении электричества посредством магнетизма» снова появлялась запись: «Никакого результата». Каждому опыту Фарадей посвящал особый параграф, и последний параграф в журнале помечен номером 16041!
Баснословная работоспособность и одержимость Фарадея была наконец вознаграждена, и 29 августа 1831 г. он «напал на след». Весь сентябрь и октябрь были сплошным повторением в разных вариантах одного и того же опыта, который положил начало всему электромашиностроению. Вот как описал этот опыт сам Фарадей в своем журнале:
«Я взял цилиндрический магнитный брусок и ввел один его конец в просвет спирали из медной проволоки, соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок (рис. 367). Затем я также быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался…» Дальше следовал гениальный вывод ученого: «Это значит, что электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».
Рис. 367. Опыт Фарадея:
1 – гальванометр; 2 – магнитный брусок; 3 – спираль из медной проволоки
Сейчас мы отлично понимаем, что если положить магнит около обмотки или даже вдвинуть его в спираль и оставить там, то ожидать появления тока при неподвижном магните равносильно вере в появление энергии из ничего. Действительно, лежит себе магнит внутри обмотки, ничего не теряет, а там течет ток, совершая работу хотя бы на нагрев этой обмотки. Так и до «вечного двигателя» недалеко! Правда, как мы уже видели, такой случай возможен, когда обмотка сверхпроводящая – там ток, возникший при введении магнита, будет течь вечно – потерь-то никаких нет! А ведь такого же эффекта в те времена ждали, и не кто-нибудь, а сам Ампер и, возможно, поначалу и Фарадей.
Одновременно с Фарадеем опыты по вдвиганию магнитных сердечников в проволочную спираль проводил и Ампер. Чтобы избежать влияния магнита на чувствительный гальванометр и Фарадей, и Ампер помещали прибор в другую комнату. При этом Ампер сначала помещал сердечник внутрь спирали и потом уже шел в соседнюю комнату проверить, не появился ли ток. Но, увы, спираль была изготовлена не из сверхпроводника, а из обычной медной проволоки, и ток практически мгновенно затухал, стоило сердечнику прекратить движение. А Фарадей поручил наблюдение за прибором ассистенту, который и заметил появление тока во время движения магнита. Казалось бы, что стоило Амперу воспользоваться чьей-либо помощью или, на худой конец, поставить гальванометр в другом углу той же комнаты и самому наблюдать за ним!
Такие досадные случаи достаточно часты в истории науки, что и дало повод великому немецкому физику Герману Гельмгольцу воскликнуть: «И от этих случайных обстоятельств зависело великое открытие!»
Это изречение Гельмгольца в полной мере относится и к самому Фарадею. Еще за 9 лет до открытия им электромагнитной индукции (а именно так стали называть возбуждение магнитом электричества) Фарадей был необычайно близок к нему.
Наблюдая за проволокой с током, проделывая с ней замысловатые манипуляции, Фарадей неожиданно обнаружил, что магнит начинает движение вблизи проволочки с током. Сохранился собственноручный рисунок Фарадея, иллюстрирующий этот опыт (рис. 368). В чаше с налитой туда ртутью плавает магнитик. Ртуть подсоединена к одному полюсу источника тока, причем в той же ртути находится конец проволочки, подсоединенный к другому полюсу. Когда электрическая цель замыкалась через ртуть, магнитик или конец проволоки приходили во вращение. Эта была первая униполярная электромашина, принципа действия которой тогда не понял сам автор. И не в этом дело – работу такой машины ученые смогли объяснить лишь гораздо позже.
Рис. 368. Рисунок Фарадея, с которого началось электромашиностроение
Но так или иначе, именно Фарадей связал магнит и движение, получив и первый электромотор – магнит вращается при пропускании тока, – и первый электрогенератор – обмотка дает ток при движении около нее магнита. Начало эры электромашиностроения, без которого немыслима современная техника, было положено!
Что вращает самовращатель?
После замечательных открытий Фарадея оставался лишь один шаг до создания электромашин.
Что же такое электромашины? Это моторы, преобразующие электрический ток в механическое движение, и генераторы, выполняющие обратную задачу – превращения механического движения в электрический ток.
Первый в мире электромотор создал Фарадей, причем принцип его действия долго оставался непонятным, да и сейчас его понимают только специалисты по униполярным машинам. Но уже электромагнитный самовращатель венгерского изобретателя Аньоша Едлика, построенный им в 1828 г., напоминает современные коллекторные электродвигатели, работающие обычно на постоянном токе. Такой ток дают, например, гальванические батареи или аккумуляторы.
Принцип работы самовращателя Едлика заключается в автоматическом перемагничивании электромагнита таким образом, чтобы его полюса поменялись местами, в зависимости от положения этого электромагнита. Едлик поместил электромагнит с сердечником на острие опоры, как стрелку компаса, а оба конца его обмотки опустил в две полукруглые чашечки со ртутью, изолированные друг от друга. К одной чашечке был подключен положительный полюс батареи, а к другой – отрицательный. Чашечки со ртутью играли роль обычных токосъемников, только с гораздо меньшим трением. Над электромагнитом находилась обмотка, подключаемая к источнику тока. В принципе эту обмотку вполне можно было бы заменить обычным постоянным магнитом, что мы для простоты и сделаем. Можно было вообще обойтись без этого магнита, памятуя, что сама Земля тоже магнит, и что как стрелка компаса, так и электромагнит на ее месте установятся во вполне определенном положении – от одного полюса к другому.