Ознакомительная версия.
• Модели F и S и множества A, B, D, E описывают ряд взаимосвязей, которые некоторая создающая система устанавливает для конкретной реализации S. Так, отношение взаимосвязи ?, ? ? A ? B, описывает тот факт, что каждый элемент системы аi, ai ? A, реализует один и только один элементарный процесс достижения цели bi, bi ? В. В свою очередь, отношение а-1 описывает взаимосвязи такого вида: элементарный процесс достижения цели bi ? B, реализуется одним элементом ai ?A. Аналогичным образом описываются все остальные взаимосвязи.
• Модели процесса и структуры. В общем случае каждому элементу ai из А соответствует некоторое подмножество элементарных процессов взаимодействия Di ? D, через которые ai воздействует на другие элементы множества А. Каждому элементу aj из А соответствует также некоторое множество элементарных процессов взаимодействия Dj ? D, через которые aj подвергается воздействию других элементов из А. Пересечение Di ? Dj = Dij множество элементарных процессов взаимодействия, через которые ai воздействует на aj (для упрощения в дальнейшем примем, что Dij — одноэлементные множества: Dij = {dij}). В противном случае соответствующее обстоятельство будем специально оговаривать. Будем считать, что аналогичным образом выделены подмножества элементов Ei, Ej, Eij, обеспечивающие, соответственно, множества процессов взаимодействия Di, Dj, Dij. Будем считать, что главным предикатам ?1-?r соответствуют отношения ?A, ?B, ?D, ?E строгого частичного порядка и отношения ?, ?-1, ?, ?-1, ?, ?-1, ?, ?-1, ?AF, ?-1AF, ?-1BF, ?DF, ?-1DF, ?EF, ?-1EF. Предположим, что на всех моделях, как полной системы, так и ее частей (основная и дополнительная системы, структура и процесс системы) сохраняются главные операции W.
• Сформируем теперь модели процесса и структуры системы. Далее, если это не требует специальных разъяснений, все дальнейшее изложение будем вести для модели конкретной реализации системы с набором главных предикатов ?; множества А, В, D, Е линейно упорядочены; для описания связей выберем отношения ?, ?, ?, ?, ?в, и, соответственно, ?-1, ?-1, ?-1, ?-1, ?-1в. Для описания взаимосвязи с F выберем отношение ? вf. Выбор такого набора отношений соответствует наиболее распространенной схеме формирования системы, уже описанной в начале раздела в виде процесса достижения цели, когда для достижения системы целей F формируется множество элементарных процессов В. Будем считать, что главные предикаты ?1 + ?r описывают только выбранные бинарные отношения. Можно выбрать и другой набор отношений; при любом наборе отношений, устанавливающих взаимосвязи между всеми множествами А, В, D, E, F, будут справедливы результаты, полученные ниже.
• Модели процесса и структуры системы определим в следующем виде. Процесс Р системы S (назовем его также полным системным процессом) — это множество взаимосвязанных элементарных процессов:
P = < {B, D}, W, ?p >; ?р ? ?.
Структура С системы S (назовем ее также полной системной структурой) — это множество взаимосвязанных элементов системы:
С = < {A, E}, W, ?c >; ?с ? ?.
• В соответствии с принятыми исходными положениями моделирования системы имеет место взаимнооднозначное соответствие между элементами множеств А и В. Взаимнооднозначное соответствие имеет место также между элементами множеств E и D. Следовательно, имеет место взaимнооднoзначное соответствие между элементами множеств-носителей в (4.4.2) и (4.4.3). Имеется также взаимнооднозначное соответствие между каждыми двумя упорядоченными парами (аi, ej) и (вi, dj), что однозначно следует из исходных положений описания с помощью сигнатуры ? целенаправленного процесса формирования модели (4.4.1). Следовательно, имеется взаимнооднозначное соответствие между элементами сигнатур ?р и ?с, ?р ? ?с. Далее, любая операция из Wc, например, объединение элементов а, а ? А и е, е ? E, взаимнооднозначно соответствует такой же операции из Wp, т.е., в данном случае, объединению процессов в, в ? B и d, d ? D. Следовательно, Wp = Wc. Но так как Wp ? Wc, Wc ? W и W | {Wp ? Wc} = ?, то Wp = Wc = W. Итак, доказана следующая
Теорема 4.4.1. Для модели системы S модели процесса Р и структуры С изоморфны.
• Модели полных, основных и дополнительных системных объектов. На основе (4.4.1)-(4.4.3) сформулируем следующий результат.
Теорема 4.4.2. Модель полной системы S – это совокупность моделей процесса Р и структуры С:
S = < P,C,?(?),?(?-1),?(?),?(?-1)>
• Полный процесс системы Р мы представляем как объединение основного процесса достижения цели Рa и системного процесса взаимодействия Ре. Хотя нами рассматриваются системы, создаваемые для реализации процесса, все результаты системной технологии могут быть применены для систем, предназначенных для реализации структуры. В системах, предназначенных для реализации системного процесса достижения цели, основные элементы системы а реализуют элементарные процессы достижения цели в. Но элементарные процессы достижения цели не могут объединяться в системный процесс Pа, минуя элементарные процессы взаимодействия d. Следовательно, необходимо описать вклад, вносимый элементарными процессами взаимодействия, в системный процесс достижения цели. Это участие не является целенаправленным, как в случае элементарных процессов достижения цели в, и, как правило, приводит к некоторому ухудшению Pa. Допустимое влияние элементарного процесса взаимодействия должно, видимо, заключаться в том, чтобы вносить какие-либо допустимые изменения в процесс достижения цели Pa при «передаче» предмета труда от одного элементарного процесса достижения цели вi к некоторому другому элементарному процессу достижения цели вj. Обозначим это допустимое изменение ?d — изменение результатов некоторого элементарного процесса вi при «передаче» предмета труда к некоторому другому «следующему» элементарному процессу вj. Множество этих изменений обозначим ?d, т.е. ?d ? ?d. Отсюда вытекает следующая теорема.
Теорема 4.4.3. Каждый элементарный процесс взаимодействия d, d ? D, между некоторыми двумя элементарными процессами достижения цели вi и вj (вi, вj ? В) объединяет в себе собственно элементарный процесс взаимодействия d0 и элементарный процесс обеспечения ограничения ?d:
d = { d0, ?d }; d0 ? D0; ?d ? ?d; D = { D0, ?d }.
Системный процесс взаимодействия Рe, в свою очередь, реализуется в системе элементами взаимодействия е. Но элементарные процессы взаимодействия d, которые ими реализуются, не могут быть объединены в системный процесс взаимодействия Pе без участия элементарных процессов достижения цели в. Участие элементарных процессов достижения цели в в процессе Pe (аналогично учету участия элементарных процессов d в процессе Pa) должно быть учтено введением ограничений ?в на изменение характеристик элементарных процессов взаимодействия при «переходе» через некоторый элементарный процесс из В («обеспечение взаимодействия между элементарными взаимодействиями»). Множество этих ограничений обозначим ?в, т.е. ?в ? ?в.
Отсюда следует
Теорема 4.4.4. Каждый элементарный процесс в, в ? В, реализуемый элементом а ? А, объединяет в себе собственно элементарный процесс достижения цели в0 и элементарный процесс обеспечения ограничения ?в:
в = {в0, ?в }; в0 ? В0; ?в ? ?в, В = { В0, ?в }.
Пересечения D0 ? ?d и В0 ? ?в не обязательно пустые множества.
Полученные результаты и наличие взаимнооднозначных соответствий между элементами множеств А и В, а также между элементами множеств Е и D, соответственно, позволяют сформулировать следующую теорему.
Теорема 4.4.5. Элементы а и е разложимы на части, реализующие части процессов в и d:
а = {а0, ?a}; а0 ? A0; ?a ? ?a; А = {A0, ?a};
Ознакомительная версия.