Мы ныряем в косяк на глубину 120 метров с расчетом вонзиться в его вершину, граница которой по-прежнему на 110 метрах. Общая высота косяка 40–50 метров. Гидроакустик докладывает, что наша цель — прямо по носу. Наклонившись вперед форштевнем, лодка стремительно скользит вдоль луча гидролокатора. Светильники выключены, чтобы не напугать рыбу. У каждого иллюминатора — по два наблюдателя.
Глубина 120 метров. Одновременно включаем все светильники, чтобы застать рыбу врасплох. Но за иллюминаторами — ничего, если не считать мелькающих золотистых точек планктона. А эхолот свидетельствует, что косяк ниже лодки примерно на 10 метров. Выключаем свет, погружаемся глубже. Косяк опять ниже нас. Ныряем еще раз, и снова преследование не в нашу пользу. Добыча не подпускает к себе. Один только раз, что называется краем глаза, усмотрели внизу и в стороне от лодки стайку в 10–12 сельдей, быстро и согласованно проплывшую параллельным курсом.
И хотя никто не засекал время, можно утверждать, что срочное погружение на глубину 120 метров длилось десятки секунд, во всяком случае не больше минуты. Если принять эту цифру, то величина вертикальной составляющей скорости подводной лодки будет примерно равна 2 метрам в секунду.
Погружение с заданной скоростью необходимо, чтобы проследить какое-либо явление, например, суточное вертикальное перемещение (миграцию) морских организмов. Такое погружение, как и обычное, может прерываться остановками (парением) на разных уровнях. Чтобы так погружаться, нужно обладать большим искусством управления лодкой, особенно в верхних слоях воды, где бывают резкие скачки плотности.
Всплытие подлодки опять-таки может быть нормальным и срочным (аварийным). Всплытие с заданной скоростью, аналогично погружению, маневр более трудный. Уже известная нам лодка «Элвин» всплыла с глубины 852 метров за 63 минуты, то есть со средней скоростью 0,23 метра в секунду. «Триест» после получасового пребывания на глубине 10 919 метров шел к поверхности со все возрастающей скоростью (за счет расширения объема бензина в балластной цистерне). Всплытие началось со скоростью полметра в секунду, на глубине 6000 метров она выросла до 0,9 метра в секунду, а на 3000 метров достигла полутора метров.
Время подъема с глубины 600 метров японской научно-исследовательской подводной лодки «Сникай» занимает 7 минут 15 секунд. Это около полутора метров в секунду.
Срочное, или аварийное, всплытие может совершаться подводной лодкой в экстренном случае, когда произошла авария или нужно вырваться из чащи водорослей, из придонного ила (а может быть, из щупалец гигантского кальмара). В этом случае цель одна: быстрее достичь поверхности, и тогда пускаются в ход все предназначенные для этого средства.
На американском «Алюминауте», например, продуваются сжатым воздухом цистерны водяного балласта, сбрасывается твердый маневровый балласт (до 540 килограммов) и отделяется балластный брусок весом полторы тонны, составляющий часть киля. «Элвин» для быстрого создания положительной плавучести может даже освобождаться от аккумуляторных батарей и манипулятора, расположенных вне прочного корпуса. Научно-исследовательские лодки, построенные сравнительно недавно, например японская «Синкай», имеют систему автоматического всплытия, которая без вмешательства людей срабатывает, если лодка «провалилась» на предельную глубину.
На «Синкае» для спасения экипажа смонтирована отделяемая с помощью пиропатронов спасательная капсула. На «Элвине» таким же манером отделяется и всплывает вся носовая часть, куда входит и сферический прочный корпус с экипажем.
Некоторые лодки имеют систему стабилизации глубины без хода. Таким устройством была снабжена, в частности, и наша «Северянка». Стабилизатор глубины, реагируя на изменение весовой плотности воды, автоматически принимал или откачивал воду из уравнительной цистерны и удерживал лодку на заданном горизонте с точностью до одного метра. О втором способе зависания лодки мы уже упоминали — это использование вертикальных движителей. Такое устройство превращает лодку в своеобразный «подводный вертолет». Третий способ — постановка лодки на якорь. Четвертый — закрепление, вернее, подвешивание лодки к бую снизу на тросе. Именно на таком тросе висела подлодка «Триест» во время гидроакустических измерений, требующих точного удержания на глубине.
Есть еще один способ, он пришел под воду из воздухоплавания. Это использование гайдропа — сравнительно небольшого по длине толстого каната или смычки якорной цепи, опускаемых вниз вблизи грунта. Ложась на грунт своей нижней частью, гайдроп «облегчает» лодку, уравнивает ее вес с силой поддержания и, таким образом, стабилизирует по глубине на каком-то расстоянии от грунта.
Для изучения придонных зон и самого дна подлодка в тех случаях, когда это допустимо по техническим и другим параметрам, может лечь на грунт. Это ответственный и сложный маневр.
Распространено представление, что подлодка ложится на грунт всем корпусом. На самом деле это случается только в аварийных ситуациях. В остальных — нормальных — условиях лодку сажают на грунт так, чтобы корма с винтами была приподнята — в любую минуту лодка должна иметь возможность сняться с грунта. Посадка на грунт чревата многими неожиданностями, и поэтому требует осмотрительности и большого искусства. Вертикальные движители упрощают выполнение маневра, но, конечно, не освобождают от осторожности, особенно на заключительном этапе.
Осторожность требуется потому, что командиру исследовательского судна приходится совершать этот маневр, не имея, как правило, полного представления о характере грунта и полагаясь лишь на показания приборов, в первую очередь эхолота.
Конечно, приборы — необходимые помощники исследователя. Но под водой, особенно вблизи дна, исследователю хочется видеть все самому, своими глазами. Для этого подводные исследовательские суда и снабжаются иллюминаторами. Эффективные же наблюдения через иллюминаторы возможны только в прозрачной воде, а она встречается далеко не всегда. Обычно считается, что чем дальше от берега, тем чище, прозрачнее вода. Однако в Северной Атлантике «Северянка», находясь в сотне миль от берегов, не раз попадала в зоны пониженной видимости, вызванной бурным цветением хризомонадовых и диатомовых водорослей.
При посадке на грунт лодка, коснувшись дна, может поднять массу ила. И если течение слабое или его нет совсем, наблюдатель долго не увидит в иллюминатор ничего, кроме густой плотной мути. Даже некоторые измерения в таких случаях придется отложить. Надолго? Чтобы взвешенные в воде частички снова осели, может потребоваться длительное время, иногда — шутка сказать — даже годы. На мелководье, где частички осадочного материала крупнее, «пылевое облако» рассеется быстрее.
Когда есть течение, лодка заходит на посадку против течения — так, чтобы частички мути уносились по ходу движения. А где течения нет, пытались применять химические вещества, способствующие экспрессному осаждению осадка. Способ, прямо скажем, неэффективный и, кроме того, искажающий химическую и биологическую картину для наблюдений.
Французский подводный исследователь Жак Ив Кусто рассказывает, что когда подлодка «ФНРС-3» при погружении в подводный каньон коснулась вертикальной стенки и вызвала оползание осадка, образовалось мутное облако, которое быстро охватило все видимое пространство. Исследователи пересекли каньон, пытаясь выйти на чистую воду. Они двигались 1 час 40 минут, а облако не рассеивалось. Наблюдать и фотографировать в таких условиях было невозможно, и гидронавты решили всплыть.
О глубоководных и донных течениях мы знаем очень мало. Однако точно установлено, что течения есть на любой из известных глубин. Как правило, их скорости не превышают долей узла, но известны и колоссальные величины — свыше 10 узлов. Они возникают в узких проливах и на мелководье во время приливов и отливов. Скорость течений и их направление даже в пределах данного столба воды могут широко колебаться. Это значит, что природные гидродинамические силы, действующие на погружающуюся или всплывающую подводную лодку, также будут переменными.
Эти силы действуют и на лодку, севшую на грунт. Поэтому конструкторам пришлось поломать голову и снабдить лодку различными устройствами — от вертикальных движителей и гайдропа до установки на нижнюю часть корпуса амортизирующих приспособлений. Так, подлодка «Алюминаут» для «мягкой» посадки на грунт снабжена авиационными пневматическими шинами с широкими протекторами (два колеса в носу и одно в корме). Эти колеса также поддерживают носовую часть лодки при движении, и по достаточно плоским и твердым участкам дна она может ехать как автомобиль.
Некоторые научно-исследовательские подводные лодки способны выпускать и принимать обратно водолазов с помощью шлюзовых устройств. Для этого служат два отсека, которые при надобности изолируются друг от друга. В «сухом» (изобарическом) отсеке всегда поддерживается обычное, то есть атмосферное, давление. В «мокром» (гипербарическом) отсеке может создаться давление, равное забортному. В нем готовят водолазов к условиям глубины, отсюда их выпускают за борт, сюда же они возвращаются и проходят декомпрессию.