My-library.info
Все категории

Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной. Жанр: Научпоп издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
97
Читать онлайн
Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной

Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной краткое содержание

Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной - описание и краткое содержание, автор Маркус Чоун, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной. Капелька крови на пальце, оставшаяся после укола, делится впечатлениями о процессах, происходящих в глубинах звезд. А заурядная электрическая лампочка и доски пола под ногами превращаются в парадоксальные, загадочные предметы, которые, оказывается, в принципе не должны существовать!Маркус Чоун (р. 1959) — в прошлом радиоастроном, успешно работавший в Калифорнийском технологическом институте; ныне — постоянный автор журнала «Нью сайентист», теле- и радиоведущий, популяризатор науки.

Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной читать онлайн бесплатно

Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной - читать книгу онлайн бесплатно, автор Маркус Чоун

Все орбитали, расположенные на определенном расстоянии от ядра — то есть те, у которых одно и то же главное квантовое число, но разные вспомогательные квантовые числа (их еще называют орбитальными, или азимутальными), — образуют, как принято говорить, «оболочку». Получается, что максимальное количество электронов, которые могут занять ближайшую к ядру оболочку, обозначенную цифрой «1», равно двум. Максимальное количество электронов, которые могут образовать следующую оболочку, обозначенную цифрой «2», равно восьми. Для оболочки с порядковым номером «3» максимальное число электронов составляет 18. Ну и так далее.

Вот только сейчас — наконец-то! — мы подбираемся к сути дела: к тому, что отличает один атом от другого. Вспомним, что у разных типов атомов количество электронов тоже разное. У самого легкого элемента — водорода — один электрон, а у самого тяжелого природного элемента — урана — этих электронов аж 92. Теперь давайте вообразим — чисто гипотетически, — что произойдет, если электроны будут добавляться к атомному ядру по одному, дабы последовательно получались атомы все более тяжелых элементов. Первая доступная оболочка — самая «нижняя», ближайшая к ядру. Если электроны каким-то образом добавляются, они первым делом поступают именно в эту оболочку. Когда она заполняется до отказа, электроны накапливаются в следующей доступной оболочке, расположенной дальше от ядра. Когда заполняется и эта оболочка, электроны начинают набиваться в следующую, ту, которую отделяет от ядра еще большее расстояние. И так далее.

У атома водорода в «нижней» оболочке всего один электрон, а у атома гелия, следующего по тяжести элемента, — два. Этого достаточно, чтобы заполнить первую оболочку под завязку. Следующий по порядку атом — литий, у него три электрона. Поскольку в первой оболочке больше нет места, третий электрон начинает формировать новую оболочку, расположенную дальше от ядра. Емкость этой оболочки — восемь электронов. Однако, если у атома более десяти электронов, возможности второй оболочки исчерпываются и начинает заполняться следующая, еще более удаленная от ядра.

Помните, что обнаружил Менделеев? Когда он разложил карточки с названиями элементов горизонтальными рядами, по большей части в порядке возрастания атомного веса, то в вертикальных колонках магическим образом расположились элементы с одинаковыми свойствами. Так вот, оказывается, «периодичность» в свойствах атомов отражает периодичность в заполнении электронами атомных оболочек. В частности, она отражает количество электронов, которые остаются во внешней оболочке атома. Все атомы с одним электроном во внешней оболочке, такие, как литий, натрий и калий, имеют очень сходные свойства. Также похожими свойствами обладают атомы с двумя электронами во внешней оболочке — магний, кальций и радий.

Причина этого заключается в том, что именно электроны, обращающиеся вокруг ядра на самых дальних расстояниях, вступают в контакт с другими атомами. Если вообразить атом бильярдным шаром, то как раз эти внешние электроны определяют «поверхность» шара и придают ему соответствующий размер. А поскольку они находятся на «поверхности» атома, то им и дано определять, как данный атом соединяется с другими представителями атомного мира. Представьте, что внешние электроны — это крючки, с помощью которых один атом цепляется к другому. Картина, конечно, грубая, но принцип тем не менее ясен. Атом с одним электроном на внешней орбите — например, натрий, который мы легко найдем в солонке на столе, — сцепляется с другим атомом только определенным способом. Атом с двумя электронами на внешней орбите, такой, как кальций, содержащийся в наших костях, цепляется другим способом. Атом с тремя внешними электронами, допустим, алюминий, легчайший из металлов, — третьим. И так далее.

То направление в пространстве, в котором вероятнее всего обнаружить эти внешние электроны, строго определяет, каким образом один тип атомов состыковывается с другими типами, чтобы получить такие соединения, как полиэтилен, аммиак или метан. Химики изображают предпочтительные направления волн, ассоциированных с электронами, в виде «связей», расходящихся от атома на манер иголок, отчего он становится похож на ежика, — эти связи способны соединяться с иглами другого ежистого атома. Получается, что химия в конечном итоге — это электронная геометрия.

Наиболее стабильными оказываются те атомы, внешние оболочки которых полностью заполнены электронами. Поскольку у них нет электронных игл, торчащих во все стороны, то они не испытывают никакого желания соединяться узами с другими атомами. Им и так хорошо. Они надменны и равнодушны по отношению к другим атомам. Они совершенны. Именно это желание атомов достичь совершенства, обрести полноту жизни обусловливает практически всю химию. Например, атом хлора, которому не хватает всего одного электрона для заполнения своей внешней оболочки, готов отнять его у натрия, — а у того во внешней оболочке как раз один-единственный электрон. По окончании этой игры «ты — мне, я — тебе» внешние оболочки у обоих атомов будут заполнены. Соединение, получившееся в результате этого «брака по расчету», — не что иное, как хлорид натрия, обычная пищевая соль.

Но есть и другие пути достичь электронной нирваны. Вместо того чтобы один атом заимствовал электрон, а второй им жертвовал, два атома могут поделить свои внешние электроны, так что у каждого будет иллюзия завершенности внешней оболочки. Наиболее важным примером этого для нас — созданий, жизнь которых строится на углероде, — служит… ну да, конечно же, углерод. Поскольку во внешней оболочке у него четыре электрона, а максимальная емкость этой оболочки — восемь, каждый атом углерода имеет сильнейшее побуждение объединиться с другими атомами этого элемента. Четыре плюс четыре получается восемь — вот вам и дом полная чаша. Именно эта склонность атомов углерода вступать в однополые отношения — по сути, в множественные однополые отношения — и служит причиной существования на белом свете умопомрачительного количества длиннющих углеродсодержащих «молекул», из которых самые важные для нас — молекулы жизни, такие, как гигантская, неохватная двойная спираль ДНК.

Приношу извинения за «кровосмесительные» подробности того, как электроны располагаются в атомах, но другого пути у меня не было. Многообразие нашего мира проистекает из того, что в природе существует не один вид атомов, а множество. А тот факт, что существует много видов атомов, проистекает из другого факта: атомы обладают очень специфической внутренней структурой. Внутри атома существуют концентрические оболочки, каждая из которых может содержать строго определенное число электронов, при этом количество электронов в неполной внешней оболочке как раз и определяет поведение атома, будь то кальций, уран или золото. И в конечном итоге причина того, что атомы имеют такую специфическую структуру, как уже упоминалось, заключается в крайней замкнутости электронов, в их антиобщественном поведении.

Вообразите, что атомные орбитали — это ступеньки некой лестницы. Ближайшая к ядру орбиталь, обладающая самой низкой энергией, соответствует нижней ступеньке. Добавление электронов, отчего атом становится все тяжелее и тяжелее, равноценно раскладыванию электронов на первой ступеньке, а когда она закончится — на второй, третьей и так далее. Теперь необходимо сказать следующее. Все вещи склонны стремиться к состоянию с самой низкой энергией — это их стремление столь же несомненно, как несомненно стремление мяча скатиться со склона на дно низины и занять положение, в котором он будет обладать наименьшей «гравитационной энергией». Но для атома это означало бы, что электроны — хоть один, хоть 92 — должны устремляться к нижней ступеньке лестницы, к орбитали с минимальным энергетическим уровнем.

Если бы подобное происходило с атомами — если бы все электроны толпились на нижней орбитали, — то не существовало бы и такой вещи, как электронная оболочка с пределом заполняемости, который никоим образом не может быть превышен. А если бы не было электронных оболочек, то сама идея заполненной оболочки была бы лишена смысла. При отсутствии у атомов желания обрести заполненную внешнюю оболочку исчезла бы побудительная причина создавать межатомные связи. Все типы атомов вели бы себя одинаково антиобщественно. Не было бы никакого многообразия. Не было бы никаких различий. Не было бы и нас с вами.

Как видите, многообразие мира, по сути, говорит нам: должно быть что-то мешающее электронам сидеть друг на друге, какой-то закон природы, о котором ранее никто не подозревал, — закон, неким образом объясняющий внутреннюю структуру атомов. И такой закон есть. Он называется «принцип запрета Паули» — по фамилии швейцарского физика Вольфганга Паули, который и предложил его в 1925 году.


Маркус Чоун читать все книги автора по порядку

Маркус Чоун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной отзывы

Отзывы читателей о книге Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной, автор: Маркус Чоун. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.