My-library.info
Все категории

Валерий Чолаков - Нобелевские премии. Ученые и открытия

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Валерий Чолаков - Нобелевские премии. Ученые и открытия. Жанр: Научпоп издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Нобелевские премии. Ученые и открытия
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
251
Читать онлайн
Валерий Чолаков - Нобелевские премии. Ученые и открытия

Валерий Чолаков - Нобелевские премии. Ученые и открытия краткое содержание

Валерий Чолаков - Нобелевские премии. Ученые и открытия - описание и краткое содержание, автор Валерий Чолаков, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга болгарского историка науки Валерия Чолакова рассказывает о выдающихся открытиях в естествознании (физике, химии, биологии, медицине), авторы которых были удостоены Нобелевской премии. Учрежденная в начале нынешнего века, эта премия откосится к числу самых почетных и авторитетных международных наград, и ее присуждение, безусловно, отмечает значительные вехи в истории мировой науки нашего столетия.Адресована широкому кругу читателей, интересующихся историей науки и ее достижениями.

Нобелевские премии. Ученые и открытия читать онлайн бесплатно

Нобелевские премии. Ученые и открытия - читать книгу онлайн бесплатно, автор Валерий Чолаков

Эта идея получила подтверждение в 1879 г., когда английский физик Уильям Крукс поместил в модифицированную вакуумную трубку «экран» — мальтийский крест из слюды. Обнаружилось, что крест перекрывал путь катодным лучам и отбрасывал тень на флуоресцирующий экран. Двигая вблизи трубки магнит, Крукс заметил, что тень перемещается; на основании этого он сделал вывод, что катодные лучи представляют собой поток отрицательно заряженных частиц. Не все ученые, однако, согласились с мнением Крукса. За три года до него немецкий физик Эуген Гольдштейн для объяснения природы катодных лучей предложил волновую гипотезу. Она основывалась на результатах Генриха Герца, который изучал прохождение этих лучей через тонкие пластинки из золота, серебра или алюминия. Физики того времени не могли даже и помыслить, что материальные частицы способны беспрепятственно проходить через вещество.

В 1892 г. Генрих Герц посоветовал своему ассистенту Филиппу Ленарду разделить катодную трубку алюминиевой фольгой на две части и таким образом исследовать катодные лучи в двух отдельных пространствах с различным давлением газов. Развивая эту идею, Ленард изготовил катодную трубку с окошком из фольги и установил, что это позволяет вывести катодные лучи за пределы трубки. Изобретение Ленарда было использовано в многочисленных экспериментах, позволивших исследовать природу и свойства катодных лучей, за что ученый был удостоен в 1905 г. Нобелевской премии по физике.

Решающие эксперименты по разгадке тайны катодных лучей были проведены английским физиком Джозефом Джоном Томсоном в 1897 г. Томсон пропускал катодные лучи между двумя электрически заряженными металлическими пластинками, подвергая их одновременно воздействию как магнитного, так и электрического поля. Это дало возможность вычислить скорость частиц, а впоследствии и отношение их массы к заряду. Томсон установил, что частицы, составляющие катодные лучи, несут элементарный электрический заряд («атом» отрицательного электричества), который примерно в 1837 раз легче атома (точнее, ядра) водорода. Частица катодных лучей была названа электроном, что берет свое начало от греческого названия янтаря; название «электрон» было предложено ирландским физиком Джорджем Стонеем еще в 1891 г. За открытие электрона Джозеф Джон Томсон был удостоен в 1906 г. Нобелевской премии по физике.

Так, от исследования катодных лучей физики пришли к открытию первой элементарной частицы — электрона. Использование вакуумных трубок привело и к открытию нового вида электромагнитного излучения, которое в конце прошлого века произвело сенсацию в мире. Это были лучи, случайно обнаруженные Вильгельмом Рентгеном. Открытие Рентгена поистине потрясло ученый мир. Только за один год было опубликовано свыше тысячи работ о новых лучах. Известный французский математик и физик Жюль Анри Пуанкаре, Имевший привычку щедро раздавать свои идеи в среде ученых, предложил проверить, не излучают ли рентгеновские лучи соли урана, которые, как было замечено, флуоресцируют под действием солнечного света. Стекло рентгеновской трубки флуоресцировало зеленым светом, что напоминало свечение кристаллов урана после того, как их подержали на солнце. Это внешнее сходство натолкнуло Пуанкаре на мысль о возможной связи между флуоресценцией и рентгеновскими лучами.

Проверкой этой гипотезы занялся французский физик Антуан Анри Беккерель. В его семье исследования флуоресценции имели давние традиции. Еще его дядя Антуан Сезар Беккерель, известный ученый и член Парижской академии, проводил эксперименты в этой области. Его отец, Александр Эдмон Беккерель, также академик и даже президент Парижской академии, был автором основополагающих трудов по фосфоресценции и классифицировал это явление в зависимости от различных внешних воздействий.

Опыты Анри Беккереля были исключительно просты. Он брал фотопластинку, заворачивал ее в черную бумагу и клал на нее кристаллики урана. Выставив пластинку на некоторое время на солнце, он затем проявлял ее и с удовлетворением обнаруживал на ней силуэты кристалликов. На первый взгляд это можно было рассматривать как подтверждение гипотезы о том, что кристаллы урана, флуоресцирующие под действием солнечного света, испускают рентгеновские лучи. Однако Беккерель, будучи ученым очень высокой квалификации, решил поставить и контрольный опыт. Он положил кристаллики урана на фотопластинку, не облучая их предварительно на солнце, и установил, что несмотря на это, они излучают, не флуоресцируя. Дальнейшие эксперименты подтвердили, что такой эффект вызывается самим ураном, содержащимся в кристаллах. Беккерель обнаружил, что «урановые лучи» ионизируют воздух и делают его электропроводным. Это позволило исследовать их с помощью электроскопа.

Открытие естественной радиоактивности дало физикам возможность проникнуть в новый мир. В конечном счете это привело к представлениям о сложности структуры атома и к овладению атомной энергией. За открытие естественной радиоактивности Анри Беккерель получил в 1903 г. Нобелевскую премию по физике. Вместе с ним были награждены два других исследователя естественной радиоактивности — французские физики Пьер Кюри и Мария Склодовская-Кюри.

Используя тот факт, что радиоактивное излучение урана ионизирует воздух, Мария Склодовская-Кюри применила в своих исследованиях электроскоп, она поставила задачу — выяснить, не обладают ли подобными свойствами и другие вещества. В 1898 г. Склодовская-Кюри одновременно (и независимо) с немецким физиком Эрхардом Карлом Шмидтом установила, что элемент торий также радиоактивен. Наряду с этим она заметила, что некоторые соединения урана и тория имеют более сильное излучение, нежели это можно было предположить, исходя из процентного содержания в них названных элементов. Это указывало на возможность существования неизвестных радиоактивных субстанций.

Мария и Пьер Кюри провели химический анализ некоторых минералов, содержащих уран, и, переработав тонны руды, в июле 1898 г. открыли новый химический элемент. Он был назван полонием — в честь Польши, родины Марии Склодовской-Кюри. В декабре того же года был открыт еще один элемент, который из-за сильного излучения получил название «радий».

Супруги Кюри по праву считаются пионерами современной атомной физики. Сам термин «радиоактивность» был предложен Марией Склодовской-Кюри. Пьер Кюри в 1901 г. обнаружил биологическое воздействие радиации, а в 1903 г. сформулировал закон уменьшения радиоактивности и ввел понятие «период полураспада». Он предложил использовать явление радиоактивности для определения абсолютного возраста земных пород. В том же году Пьер Кюри совместно с А. Лабордом обнаружил самопроизвольное выделение тепла солями радия, установив, что 1 г радия выделяет 100 кал тепла в час. Это указывало на то, что в атоме сосредоточена огромная энергия. К сожалению, Пьер Кюри погиб в 1906 г. от несчастного случая, едва достигнув 47 лет. Исследования были продолжены Марией Склодовской-Кюри, которая в 1910 г. вместе с французским химиком А. Дебьерном выделила металлический радий в чистом виде. Она определила атомный вес радия и указала его место в периодической системе элементов, за что в 1911 г. была удостоена второй Нобелевской премии — на этот раз по химии.

Законы излучения

В конце XVII в. Исаак Ньютон с помощью трехгранной стеклянной призмы разложил белый свет на семь цветов (в спектр). Этот эффектный эксперимент положил начало исследованиям света, которые два столетия спустя привели к важным последствиям в физике. Благодаря усовершенствованию оптических приборов в начале XIX в. были получены довольно хорошие спектры света различных источников. Постепенно накопленные данные были обобщены в 1859 г. Густавом Робертом Кирхгофом и Робертом Вильгельмом Бунзеном, которые выдвинули гипотезу о наличии связи между, спектрами и свойствами атомов.

В 1868 г. Эйльхард Мичерлих высказал предположение, что спектры несут информацию о процессах, происходящих в самом атоме. В дальнейшем обнаруженные в спектрах закономерности все более убеждали физиков в справедливости этого предположения. В 1885 г. Иоганн Бальмер установил простую зависимость между длинами волн линий видимой части спектра атома водорода, которую он выразил математической формулой (формула Бальмера). Позднее, в 1890 г., Иоганнес Роберт Ридберг ввел в спектроскопию свою хорошо известную константу R (постоянная Ридберга), выражающую взаимосвязь между различными сериями спектральных линий элемента.

Классическая физика не могла объяснить эти закономерности, так как ученым не была ясна природа излучения. В конце прошлого века эти процессы рассматривались с позиций термодинамики. Сначала, в 1879 г., Йозеф Стефан экспериментально установил, что энергия, излучаемая нагретым телом, пропорциональна четвертой степени его абсолютной температуры. Этот закон теоретически вывел в 1884 г. Людвиг Больцман. Над проблемой излучения начал работать и немецкий физик Вильгельм Вин, с 1890 г. ассистент Германа Гельмгольца в Физико-техническом институте в Берлине. В 1893 г. Вин опубликовал результаты своих исследований спектрального распределения излучения нагретого тела. Вин математически описывает общеизвестный факт, что с увеличением температуры свечение тела изменяется от красного до синевато-белого (т. е. максимум излучения смещается в область коротких волн). Эта закономерность получила в науке название «закон смещения Вина». В 1896 г., исходя из классических представлений, ученый вывел закон распределения энергии в спектре абсолютно черного тела (закон излучения Вина).


Валерий Чолаков читать все книги автора по порядку

Валерий Чолаков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Нобелевские премии. Ученые и открытия отзывы

Отзывы читателей о книге Нобелевские премии. Ученые и открытия, автор: Валерий Чолаков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.