My-library.info
Все категории

Жан-Поль Эймишен - Электроника?.. Нет ничего проще!

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Жан-Поль Эймишен - Электроника?.. Нет ничего проще!. Жанр: Радиотехника издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Электроника?.. Нет ничего проще!
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
286
Читать онлайн
Жан-Поль Эймишен - Электроника?.. Нет ничего проще!

Жан-Поль Эймишен - Электроника?.. Нет ничего проще! краткое содержание

Жан-Поль Эймишен - Электроника?.. Нет ничего проще! - описание и краткое содержание, автор Жан-Поль Эймишен, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.Книга рассчитана на широкий круг читателей.

Электроника?.. Нет ничего проще! читать онлайн бесплатно

Электроника?.. Нет ничего проще! - читать книгу онлайн бесплатно, автор Жан-Поль Эймишен

Рис. 30. Ядерные частицы, проходя через ионизационную камеру, ионизируют находящийся там газ, в результате чего начинает проходить очень небольшой ток. Падение напряжения, создаваемое этим током, измеряют на резисторе с очень большим сопротивлением.


Н. — Значит, твой метод с ионизационной камерой совсем нечувствительный?

Л. — Чувствительность мала, но она позволяет измерять излучения в очень широком диапазоне интенсивностей: от таких, которые человек без особого вреда выдерживает десятки часов до могущих убить его в одну минуту.

Н. — В последнем случае я предпочел бы держать ионизационную камеру на конце длинного шеста!


Счетчик Гейгера — Мюллера

Л. — Нередко делают еще лучше — измерения поручают проводить управляемым по радио роботам. При измерении менее интенсивных излучений применяют счетчики Гейгера — Мюллера, в которых ионизирующие свойства используются иначе, чем в ионизационной камере.

Н. — Что это за инструмент?

Л. — Он чрезвычайно прост и представляет собой запаянную колбу, заполненную газом с низким давлением. В колбе находится металлическая трубочка, в которой проходит изолированный от нее провод (рис. 31). Если создать некоторую разность потенциалов между проводом и трубочкой, то получим…



Рис. 31. Счетчик Гейгера — Мюллера. Трубочка с натянутой по ее оси проволокой помещена в колбу, заполненную газом с низким давлением. Ионизация, вызываемая каждой ядерной частицей, приводит к электрическому пробою газа.


Н. — … ионизационную камеру.

Л. — Действительно, сходство большое, и наш счетчик можно было бы использовать как ионизационную камеру. Но приложенная разность потенциалов относительно велика — она близка к той, которая требуется для начала электрического разряда газа в колбе. Если ядерная частица пройдет через газ, она может вызвать электрический разряд.

Н. — Точно так же, как и в ионизационной камере.

Л. — Нет, и по двум причинам. Во-первых, разность потенциалов между двумя электродами достаточно высока, чтобы под воздействием местной ионизации, вызванной ядерной частицей, лавинообразно ионизировался весь газ в колбе и возник электрический разряд. Во-вторых, мы не ставим задачу измерять возникающий электрический ток, а стараемся лишь установить, сколько раз в секунду произошло это явление.



Н. — Так, значит, нам нужно сосчитать импульсы, а их может быть очень много. Это не очень практично. Но ты мне сказал, что ионизация становится общей под воздействием напряжения труба — провод, а как же она тогда гаснет?

Л. — Полезное замечание. Действительно, если не предпринять специальных мер, она не погаснет. Для этой цели можно использовать электронную схему, называемую схемой гашения, которая после импульса ионизации значительно снижает напряжение на выводах счетчика и тем самым вызывает деионизацию. Но наилучшее решение заключается во введении в находящийся в колбе газ небольшого количества паров спирта или брома; тяжелые молекулы примеси своей инерцией вызовут деионизацию газа в счетчике сразу же после его ионизации, получится самогасящийся счетчик. Посмотри, я принес с собой такой счетчик. Я подаю на него питание, а к выводам резистора, по которому протекает ток центрального проводника, подключен вход усилителя. Громкоговоритель на выходе усилителя позволит нам услышать импульсы. Я подношу к нашему счетчику кусочек уранита (руды, содержащей радий и уран); слышишь, как часто следует один за другим щелчки?

Н. — Да, но звук производит странное впечатление, это не музыкальная нота. Несомненно причина в том, что звук порождается импульсами, а не синусоидами.

Л. — Совсем нет, Незнайкин. Распады ядер атомов подчиняются только закону случая. Может случиться так, что в одну секунду произойдет только один распад, а в следующую — десять. Эти импульсы следуют один за другим так же неравномерно, как стучат капли дождя по крыше. Но тем не менее можно установить средний темп в виде количества ударов в минуту (если за минуту происходит достаточное количество распадов, чтобы мог проявиться закон больших чисел).

Н. — А теперь убери подальше свой уранит. Постой, здесь наверное спрятано какое-то радиоактивное вещество — щелчки продолжаются, правда они стали очень редкими.



Космические лучи

Л. — То, что ты слышишь сейчас, Незнайкин, космические лучи, таинственные лучи, возникающие в верхних слоях атмосферы под воздействием прилетающих из звездного пространства частиц и падающих на нас, как непрерывный довольно слабый дождь. Они аналогичны гамма-излучению, но обладают большей проникающей способностью: несколько метров бетона не останавливает и 10 % космических лучей. Они причиняют много хлопот при измерениях, так как избавиться от них невозможно и приходится производить измерения с учетом наличия этих лучей, как если бы мы захотели производить измерения света, не имея возможности добиться в помещении полной темноты.

Н. — Но тебе не следовало этого мне говорить. Непрерывно пронизывающие меня насквозь лучи не способствуют хорошему настроению.

Л. — Успокойся, Незнайкин. Космические лучи пронизывают тебя точно так же, как всегда пронизывали все человечество, но мы себя от этого хуже не чувствуем.

Н. — Ну, ладно, но скажи мне, какие лучи можно обнаружить твоим счетчиком?

Л. — Все лучи, обладающие ионизирующими свойствами и достаточной проникающей способностью, чтобы достичь трубочки счетчика: все виды гамма-лучей, бета-лучи с достаточной проникающей способностью (особенно, если стенка колбы счетчика тонкая) и даже некоторые виды альфа-лучей, если на конце счетчика сделано тонкое окошко из пропускающего эти лучи материала, например из слюды. Во всяком случае счетчик Гейгера — Мюллера представляет собой высокочувствительный измерительный прибор: он начинает вырабатывать импульсы, значительно учащенные по сравнению с импульсами, вызываемыми космическими лучами, уже при очень низких уровнях радиации, не представляющих никакой опасности для человека, например при радиации от небольшого количества радиоактивной руды. Поэтому эти счетчики используют в геологической разведке и в научных исследованиях для обнаружения излучения.


Сцинтилляционный счетчик

Н. — Так, значит, счетчик Гейгера — Мюллера самый чувствительный прибор для обнаружения ядерных излучений?

Л. — Нет, его рекорд по чувствительности побит сцинтилляционным счетчиком.

Н. — Что это за прибор? Мне кажется, что ты уже упоминал о нем, когда рассказывал о фотоэлементах с умножением электронов?

Л. — Действительно. Здесь используется кристалл или кусочек специальной пластмассы, обладающей свойством давать вспышку света при попадании ядерной частицы. Этот кристалл помещается рядом с фото катодом фотоумножителя (рис. 32).



Рис. 32. Ядерные частицы проходят через черную бумагу или тонкий слой металла (их задача не пропустить свет) и попадают на кристалл. На каждую частицу кристалла воздействуют вспышкой света, обнаруживаемой фотоумножителем, на который наклеен кристалл.


Фото катод закрыт от воздействия постороннего света черной бумагой или каким-либо иным непрозрачным слоем, через который должны пройти частицы прежде, чем попасть на кристалл. Ток фото у множителя складывается из серии импульсов, средний ритм следования которых и замеряется. Этот метод настолько чувствителен, что он позволяет обнаруживать радиоактивные руды с движущегося автомобиля или с самолета, пролетающего над обследуемой местностью. Кроме того, сцинтилляционный счетчик на каждую частицу вырабатывает импульс, пропорциональный ее энергии, тогда как у счетчика Гейгера все импульсы одинаковые. Это свойство позволяет производить измерение энергетического спектра изучаемых частиц.

Об измерениях в ядерной технике можно было бы, разумеется, написать целые тома, но я полагаю, что для себя мы уже исчерпали эту тему.



Н. — Я с тобою не согласен и пока еще не чувствую себя истощенным… Ты ничего не рассказал ни об обнаружении нейтронов, ни об использовании изотопов, ни об ином, кроме техники безопасности, использовании измерений радиоактивности, как, например, в геологической разведке или в научных исследованиях.


Жан-Поль Эймишен читать все книги автора по порядку

Жан-Поль Эймишен - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Электроника?.. Нет ничего проще! отзывы

Отзывы читателей о книге Электроника?.. Нет ничего проще!, автор: Жан-Поль Эймишен. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.