My-library.info
Все категории

В. Жуков - Химия в бою

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе В. Жуков - Химия в бою. Жанр: Техническая литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Химия в бою
Автор
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
158
Читать онлайн
В. Жуков - Химия в бою

В. Жуков - Химия в бою краткое содержание

В. Жуков - Химия в бою - описание и краткое содержание, автор В. Жуков, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В книге говорится о химическом оружии армий империалистических государств и средствах защиты от него Читатель узнает о роли химии в создании и развитии ракетно-ядерного оружия, самолетостроения, кораблестроения Отдельные главы расскажут о том, как химия содействует развитию ствольной артиллерии и танков, о пластмассовой броне как для боевых машин и кораблей, так и для индивидуальной защиты. Книга написана по материалам, опубликованным в иностранной и советской печати, и рассчитана на военных и гражданских читателей.Редактор-составитель инженер-подполковник Жуков В.Н.

Химия в бою читать онлайн бесплатно

Химия в бою - читать книгу онлайн бесплатно, автор В. Жуков

Об эффективности действия подобных присадок судят, в частности, по результатам опытных сравнительных стрельб из 105-мм орудия. Оказалось, что в зависимости от вида присадок и соотношения их компонентов канал ствола изнашивается меньше в шесть, восемь и даже в 20 раз. Считают, что такие сравнительно дешевые присадки целесообразно применять в стрелково-артиллерийских боеприпасах любого калибра.

Успехи химической науки позволяют создавать и новые виды боеприпасов. Как известно, во время второй мировой войны появился новый тип снаряда для поражения брони — кумулятивный, то есть концентрирующий энергию взрыва в одном направлении. Долгое время усилия специалистов, совершенствующих кумулятивный заряд, были направлены в основном на получение максимальной бронепробиваемости при относительно малом весе боеприпаса. Их не смущало, что во многих случаях диаметр пробоин в броне был небольшим, с диаметр карандаша. Но при такой пробоине степень поражения экипажа и механизмов боевой машины была незначительной. Впоследствии взгляды на бронепробиваемость изменились. В зарубежной литературе стали подчеркивать, что толщина брони, которую может пробить боеприпас, мало говорит о его достоинствах. Необходимо оценивать все факторы, обусловливающие эффективность стрельбы, и особенно поражающий эффект за броней.

Исследования химиков в этом направлении привели к созданию нового взрывчатого вещества — пластического. Его можно мять руками, как пластилин или замазку. Снаряды, снаряженные им, в зарубежной печати называют бронебойно-фугасными. Их оживальная часть представляет собой тонкую металлическую оболочку, которая заполнена пластическим взрывчатым веществом. При встрече с броней оболочка разрушается и взрывчатое вещество при помощи специального взрывателя подрывается на поверхности брони. Осколки брони, отколовшиеся с ее внутренней поверхности, поражают экипаж танка, вызывают взрыв боеприпасов, пожар.

Снаряд с пластическим взрывчатым веществом, отмечала печать, в настоящее время настолько усовершенствован, что стал обладать не только бронебойным, но и очень высоким осколочно-фугасным действием. По разрушительному эффекту он даже превосходит осколочно-фугасную гранату. Разрываясь на поверхности бетонной преграды, граната почти не повреждает ее. А снаряд с пластическим ВВ, наоборот, разрушает преграду на множество обломков. Они разлетаются в радиусе до 40 метров, поражая находящихся за укрытием материальную часть и людей.

Однажды во время показательных стрельб разведывательный бронеавтомобиль был укрыт срубом из бревен. Оказалось, что, используя осколочно-фугасные гранаты, разрушить бревенчатую защиту можно лишь несколькими выстрелами. При стрельбе же Снарядами с пластическим взрывчатым веществом укрытие было снесено первым выстрелом, а второй полностью разрушил бронеавтомобиль.

Снаряды с пластическим взрывчатым веществом включены в боекомплекты танков и противотанковых орудий английской и некоторых других иностранных армий. Снаряд американского 106-мм безоткатного орудия М40, например, снабжен зарядом пластического взрывчатого вещества весом 3,6 килограмма. В печати отмечалось, что подобным снарядам нет необходимости сообщать очень большую скорость. Например, максимальная эффективность 105-мм снаряда, входящего в боекомплект американского танка М60А1, достигнута при начальной скорости 800 м/сек.

Химия, однако, помогает не только в создании новых боеприпасов, но и обеспечивает их экономию. Этому служат имитаторы огня, используемые в боевой подготовке. В американской армии применяют, например, имитаторы огня танковых пушек, которые воссоздают для экипажа танка и взаимодействующей с ним пехоты все явления, сопровождающие реальный орудийный выстрел: вспышку, звук и дым. В конструкцию такого имитатора входят баллоны с кислородом, газом пропаном и дымовой цилиндр. Когда наводчик или командир танка нажимает на спусковой крючок и замыкает тем самым цепь выстрела, кислород и пропан поступают в короткую трубу, смонтированную на броневой защите пушки, воспламеняются и создают световой и звуковой эффекты. Одновременно из дымового цилиндра выходит соединение титана, которое имитирует дым выстрела.

Как отмечалось в печати, подобный имитатор можно устанавливать на любых танках, вооруженных 76-, 90- и 105-мм пушками. Один его «выстрел» обходится в сотни раз дешевле, чем холостой выстрел 90-мм пушки. Подчеркивают также, что общий вес трех баллонов с пропаном и кислородом и одного дымового цилиндра, обеспечивающих производство 65 имитаций выстрелов, составляет 37,6 килограмма, в то время как такое же количество 90-мм холостых выстрелов весит в 12 раз больше.

До последнего времени за рубежом подавляющее большинство артиллерийских гильз изготовлялось из латуни. Но латунь сравнительно дорогой металл, а в условиях массового производства боеприпасов в военное время становится дефицитным материалом. Поэтому войска обязаны были собирать стреляные гильзы и отправлять их в тыл для повторного использования или переплавки. К тому же латунная гильза имеет большой вес — на ее долю приходится около 30 процентов веса унитарного патрона.

Не удивительно, что с появлением синтетических материалов за рубежом сразу были начаты работы по созданию пластмассовых гильз, которые могли бы заменить латунные. В 1957 году в США проводились испытания 105-мм артиллерийских гильз, изготовленных из пластмассы. Они были почти в 2,5 раза легче латунных. Во время опытных стрельб пластмассовые гильзы подвергались воздействию пороховых газов, имеющих давление до 2450 кг/см2 и температуру до 2130 градусов. Несмотря на это, многие гильзы после выстрела оказались неповрежденными, их можно было использовать вторично.

В зарубежной печати сообщалось, что одна из американских фирм методом штамповки и литья производит из фибры артиллерийские гильзы, контейнеры для ракет, укупорку для хранения радиовзрывателей и т. п.

В Англии на одной из выставок демонстрировались контейнеры из полимерных материалов для 81-мм мин и для снарядов к 84-мм безоткатному орудию, полистироловый контейнер для выстрелов 105-мм самоходной пушки «Аббот». Посетители выставки могли также увидеть дополнительные заряды к 81-мм миномету, заключенные в водонепроницаемую, полностью сгорающую при выстреле целлулоидную оболочку; обтюрирующее кольцо из поликарбоната для того же миномета и переходную муфту под взрыватель, изготовленную из фенолформальдегидных смол.

Зарубежные специалисты отмечают, что стоимость подобных изделий относительно низка. За счет изменения соотношения компонентов (целлюлозного волокна, синтетического волокна и связующей смолы) можно широко и целенаправленно изменять физические характеристики материалов, из которых они сделаны. В качестве другого примера использования пластмасс в боеприпасном деле можно назвать принятые в 1963 году на вооружение французской армии холостые винтовочные патроны калибра 7,5 и 7,62 мм, гильзы их изготовлены из пластмассы.

Учитывая такие качества пластмассовых гильз, как небольшой вес, высокая коррозийная стойкость и дешевизна, зарубежные специалисты считают, что в дальнейшем следует ожидать более широкого применения их вместо латунных в полевой артиллерии. Что же касается танков и самоходных установок, то здесь дело обстоит несколько иначе. Указывают на то, что башни и рубки танков и самоходок имеют ограниченные размеры, а гильзы — будь они латунными или пластмассовыми — при стрельбе загромождают боевое отделение и стесняют действия экипажа. Вместе с гильзами в боевое отделение проникают ядовитые пороховые газы, которые, несмотря на наличие эжектора и системы вентиляции, снижают боеспособность экипажей.

Эти обстоятельства ведут к необходимости делать люки в броне боевых машин, хотя это ослабляет ее, оснащать такие машины специальными устройствами для автоматического выбрасывания гильз из боевого отделения сразу после выстрела.

Кроме того, гильзы имеют большую длину. Чтобы обеспечить нормальную работу затвора орудия, удаляющего их после выстрела из патронника, приходится, как отмечалось в печати, увеличивать размеры и вес башни, уменьшать углы вертикального обстрела, особенно угла склонения. Поэтому за рубежом уделяют большое внимание разработке гильз, которые сгорали бы при выстреле.

Создание таких гильз, по заявлениям иностранных специалистов, — трудная техническая задача. Основное требование здесь — полное сгорание гильзы, так как оставшиеся в стволе орудия несгоревшие куски неизбежно приведут к разрыву ствола при очередном выстреле. Считается, что особенно сложно создать прочный, полностью сгорающий корпус воспламенителя. Вместе с тем гильза должна быть жаростойкой, чтобы при интенсивной стрельбе она не воспламенялась преждевременно, соприкоснувшись с горячими стенками зарядной каморы. Она должна быть и прочной, способной переносить все превратности транспортировки и хранения.


В. Жуков читать все книги автора по порядку

В. Жуков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Химия в бою отзывы

Отзывы читателей о книге Химия в бою, автор: В. Жуков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.