В его механизме использовалась соответствующим образом измененная идея Стевина о наклонных плоскостях. В углах вертикально расположенной рамы, имеющей форму прямоугольного треугольника с одним из катетов в основании, на горизонтальных осях установлены три ролика. На ролики насажен ремень, к которому прикреплены губки, а поверх губок надета цепь с равномерно распределенными грузами. Нижняя часть устройства погружена в воду на такую глубину, что губки, находящиеся между нижними роликами, оказываются под водой. Под действием капиллярных явлений в губках ремень должен вращаться в направлении против часовой стрелки. На вертикальном участке замкнутого треугольного контура цепь с грузами не оказывает действия на губки, которые удерживают впитанную ими ранее воду. В то же время губки, находящиеся на наклонном участке рамы, сжимаются под действием грузов и отдают воду. Таким образом, губки вертикального участка имеют больший вес и тянут всю цепь вниз. Этим и обеспечивается непрерывное движение в устройстве.
Сэр Уильям произвел расчет количества работы, которую можно, как он думал, получить с помощью его машины. Согласно подсчетам, хорошая губка способна впитать такое количество воды, что уровень последне понизится на один дюйм. При толщине ремня с губками в один фут и ширине в шесть футов площадь оказавшейся под водой части устройства составит 864 квадратных дюйма. Следовательно, общий вес воды, поднятой под действием капиллярных сил, достигнет тридцати фунтов.
Рис. 31. Уильям Дэвис из Детройта предложил вариант мотора, в котором использованы резиновые мешочки с грузами. Пока рычаги опускаются вниз, грузы сжимают мешочки. Когда же рычаги начинают подниматься, грузы растягивают мешочки. Воздух из сжатого верхнего мешочка по полому стержню поступает в нижний мешочек и раздувает его.
Рис. 32. Еще одна схема с резиновыми мешочками и шарами. В основу ее действия положено вытеснение воздуха в гибкий полый ремень. Предпринята попытка снести к минимуму трение между ремнем и вращающими его шкивами.
Этого, по мнению Конгрева, должно быть достаточно, чтобы превысить потери на трение при движении ремня с губками вдоль рамы.
Хотя Конгреву удалось запатентовать устройства, он так и не смог переубедить своих критиков, утверждавших, что «вечный двигатель» не сдвинется с места.
Рис. 33. В отличие от большинства изобретателей конца XIX века, экспериментировавших с воздухом, нагнетаемым в резервуар с водой, автор этого проекта попытался создать вечный двигатель, используя идеи XVIII века. Он обратился к традиционным элементам — водяному колесу, насосу и кривошипу. Торжество изобретателя было столь же недолгим, сколь и пребывание воды в коллекторе этого «вечного» двигателя.
Что только не испробовали искатели вечного движения: погружаемые в воду губчатые колеса; пневматические механизмы с резиновыми мехами, которые под водой наполнялись воздухом, затем конвейерным ремнем подымались вверх и вновь опускались в воду пустыми; устройства, в которых использовалось изменение давления воздуха и вакуума...
В 1825 году журнал «Микэникс мэгэзин» поместил на своих страницах описание весьма замысловатого, но тем не менее совершенно неосуществимого устройства.
Рис. 34. в 1865 году швейцарец Герман Леонард изобрел этот «поплавковый» мотор, столь же простой, сколь и нереализуемый.
Вот что писал о нем комментатор:
«Я позволю себе предложить вашему вниманию этот прибор. Признаюсь, я не сразу понял, в чем заключалась ошибка автора проекта, хотя она совершенно очевидна. Идея прибора состоит в том, чтобы заставить тело, которое тонет в легкой среде и плавает в тяжелой, последовательно проходить из одной среды в другую, осуществляя это круговое движение постоянно. Сказать, что невозможно сделать такие клапаны, которые позволят телу проникать из одной среды в другую по предложенной автором схеме, значит упустить ту главную причину, по которой вся идея этого прибора является ошибочной. Предполагается, что конструкция имеет форму двуколенной трубки, желательно стеклянной (чтобы можно было наблюдать движение шаров внутри трубки). Эти шары, попадая из воздуха в воду и из воды в воздух, всплывают на поверхность или тонут. Нижний конец трубки помещен в воду, но принцип действия прибора не изменится, если трубку снизу закрыть».
[поменять рисунок!]
Рис. 35. В 1825 году появилась схема вечного двигателя, состоящего из двухколенной трубки с клапанами и маленькими шарами.
«Описание рисунка. Левое колено прибора 1 наполнено водой до отметки A; клапаны 2 и 3 открываются только вверх; правое колено 4 заполнено по всей длине воздухом: клапаны 5, 6 открываются только вниз. Предполагается, что весь аппарат воздухо- и водонепроницаем. Кружки изображают полые шары, которые могут погружаться в воду на четверть своего объема. Вес трех шаров, помещенных в правом колене над четвертым шаром, удерживает последний у самой поверхности воды. Добавление еще одного шара в правое колено вытеснит нижний шар к основанию левого колена С, в результате чего он начнет подниматься. Таким образом, все устройство приходит в движение. Шар 8, поднимающийся вверх по левому колену, доходит до клапана 3, ударяется в него и за счет выталкивающей силы воды открывает его, проходя выше по колену. После прохода шара клапан 3 с помощью соответствующих грузов и пружин закрывается. Дойдя до следующего клапана 2, шар сходным образом проходит и через него и устремляется еще выше. Достигнув точки А, шар 8 всплывает на поверхность воды на три четверти своего объема. Следующий шар, поднимающийся по левому колену следом за шаром 8, полностью вытеснит его из воды. Проходя мимо точки D, шар 8 попадает в правое колено (заполненное воздухом) и падает на клапан 5, который под действием удара открывается и пропускает шар ниже по колену. После этого клапан закроется с помощью пружин и грузов. Далее шар 8 будет катиться по изогнутой части правого колена прибора к клапану 6, который преодолевается уже описанным способом. Изгиб позволяет увеличить время движения шаров по правому колену и делает более наглядными происходящие в приборе процессы. Затем, упав на четыре шара, находящиеся в нижней части правого колена, шар 8 заставляет самый нижний из них сместиться к точке С. На этом цикл работы заканчивается».
Рис. 36. Джон Сатклифф из Хантсвилла, штат Миссури, получил патент на «поплавковый» мотор в 1882 году. Мехи приводились в действие кривошипом и поджимались тяжелым шаром Они нагнетали воздух в резиновый пузырь, когда последний находился под водой.
Все это тяжеловесное описание не оставляет читателю никаких сомнений в том, что автор проекта был не только человеком, далеким от практики, но и в том, что он имел совершенно нелепые представления о физических свойствах воды и воздуха. Как можно было ожидать, чтобы полый шар — «в одну четверть веса воды» — проходил через изогнутую трубку или открывал клапаны в левом колене, преодолевая давление на них столба воды!
Джон Фин в своей книге «Семь заблуждений науки» (Лондон, 1913) приводит описание более простой, но от этого не более реальной схемы, найденной им на страницах журнала «Пауэр» и относящейся к началу нашего столетия. Основным элементом устройства является загнутая на одном конце трубка. Оба конца ее открыты, но нижний сужается на конус. Хорошо промасленная пеньковая веревка проходит через трубку и подвешивается на блоке, который установлен над нею. Загнутая часть трубки выполняет роль нижнего блока или направляющей в этой системе, а ее конусообразный конец так плотно обхватывает веревку, что между трубкой и веревкой образуется герметичный затвор. Затем трубка до краев заполняется водой. Предполагается, что погруженная в воду часть промасленной веревки начнет подниматься вверх, а веревка на другом конце блока под действием силы тяжести и начавшегося движения погруженной в воду части веревки будет двигаться вниз.
Рис. 37.
Описанная схема практически неработоспособна, поскольку основывается на совершенно невыполнимых условиях взаимодействия ее элементов. В частности, вечному движению здесь препятствуют значительные силы трения, возникающие при контакте веревки с сужающимся концом трубки (не говоря уже о трении в подшипниках блока). Понятно, что, для того чтобы воспрепятствовать утечке жидкости из трубки, сужающийся конец последней должен оказывать определенное давление на веревку. Если попытаться увеличить «мощность на поднимание», удлинив прямую часть трубки, то увеличится объем и вес воды, а значит, возрастет вероятность ее утечки из конусообразного сужения. В свою очередь, это вызовет необходимость еще туже зажать веревку в конце трубки, увеличив тем самым трение между веревкой и трубкой... Коэффициент полезного действия такого устройства будет значительно меньше единицы, а ведь вечное движение возможно лишь тогда, когда этот коэффициент, напротив, больше единицы.