My-library.info
Все категории

Елена Буслаева - Материаловедение. Шпаргалка

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Елена Буслаева - Материаловедение. Шпаргалка. Жанр: Техническая литература издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Материаловедение. Шпаргалка
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
14 февраль 2019
Количество просмотров:
241
Читать онлайн
Елена Буслаева - Материаловедение. Шпаргалка

Елена Буслаева - Материаловедение. Шпаргалка краткое содержание

Елена Буслаева - Материаловедение. Шпаргалка - описание и краткое содержание, автор Елена Буслаева, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Шпаргалка содержит краткие и ясные ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Материаловедение». Издание может быть полезно всем студентам технических вузов, изучающим Дисциплину «Материаловедение».

Материаловедение. Шпаргалка читать онлайн бесплатно

Материаловедение. Шпаргалка - читать книгу онлайн бесплатно, автор Елена Буслаева

Низколегированная сталь для режущего инструмента по своей режущей способности не отличается от углеродистой стали и применяется при небольших скоростях резания.

Распространенные марки низколегированной стали для режущих инструментов являются:

1) сталь марки Х – хромовая (для изготовления резцов, сверл);

2) сталь марки 9ХС – хромокремнистая (для изготовления резцов, сверл);

3) сталь марки В1 – вольфрамовая (для изготовления спиральных сверл, разверток).

42. Нержавеющие, теплостойкие и жаропрочные, хладостойкие, электротехнические и износостойкие стали

Коррозионная стойкость стали повышается, если содержание углерода снизить до минимально возможного количества и ввести легирующий элемент, образующий с железом твердые растворы, в таком количестве, при котором повысится электродный потенциал сплава. Сталь, стойкую против атмосферной коррозии, называют нержавеющей. Сталь или сплав, имеющие высокую стойкость при коррозионном воздействии кислот, солей, щелочей и других агрессивных сред, называют кислотостойкими.

Коррозия – это разрушение металлов из-за взаимодействия электрохимического взаимодействия их с окружающей средой. Конструкционные материалы обладают высокой коррозионной стойкостью. Углеродистые и низколегированные стали неустойчивы против коррозии в атмосфере, воде и других средах. Коррозионно-стойкими называют металлы и сплавы, которые способны сопротивляться коррозионному воздействию среды.

Хром – основной легирующий элемент, делающий сталь коррозионностойкой в окислительных средах.

Жаростойкость – это способность металлов и сплавов сопротивляться коррозионному воздействию газов при высоких температурах. Коррозионное воздействие газов приводит к окислению стали при высокой температуре. На интенсивность окисления влияют состав и строение оксидной пленки. Если пленка пористая, то окисление происходит интенсивно, если плотная – замедленно или вообще прекращается.

Для получения плотной оксидной пленки, которая препятствует проникновению кислорода вглубь стали, ее легируют хромом, кремнием или алюминием. Чем больше легирующего элемента в стали, тем выше ее жаростойкость.

Теплостойкость. Для инструментального материала она определяется наивысшей температурой, при которой он сохраняет свои режущие свойства. Теплостойкость применяемых инструментальных материалов составляет от 200 до 1500о С. По степени убывания теплостойкости материалы располагаются в следующем порядке: сверхтвердые, режущая керамика, твердые сплавы, быстрорежущие, легированные, углеродистые стали. Даже при воздействии в течении долгого времени температур высокие жаропрочные свойства должны оставаться на прежнем уровне. Металл горячих штампов должен оказывать устойчивое сопротивление отпуску.

Жаропрочность – это способность стали сопротивляться механическим нагрузкам при высоких температурах. К жаропрочным относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение длительного времени. Жаропрочные стали обычно одновременно и жаростойкие.

Ползучесть – это деформация, увеличивающаяся под длительным действием постоянной нагрузки и высокой температуры. Для углеродистых и легированных конструкционных сталей ползучесть наблюдается при температурах выше 350 °C.

Ползучесть характеризуется пределом ползучести, под которым понимают напряжение, вызывающее деформацию стали на определенную величину за определенное время при заданной температуре.

Жаропрочные сплавы. Развитие жаропрочных никелевых сплавов началось с небольших добавок титана и алюминия к обычному нихрому. Добавление менее 2 % титана и алюминия без термической обработки заметно повышает показатели ползучести нихрома при температурах около 700 °C.

Жаропрочные никелевые сплавы подразделяют на деформируемые и литейные. Жаропрочные свойства деформируемых сплавов формируются при термической обработке. Литейные жаропрочные никелевые сплавы по составу сходны с деформируемыми, но обычно содержат большее количество алюминия и титана.

Хладостойкость – способность металла оказывать сопротивление деформации и разрушению, которые могут возникнуть под воздействием низких температур.

Электротехническая сталь является тонколистовой мягнитномягкой сталью. Из нее изготавливают сердечники электротехнического оборудования. В состав данной стали входит кремний. Различают холоднокатаную и горячекатаную электротехническую сталь, а также динамную и трансформаторную. Для легирования стали электротехнической используют 0,5 % Al.

Износостойкая сталь. Для деталей, работающих в условиях абразивного износа, высоких давлений и ударов (траки гусеничных машин, щеки дробилок, переводные стрелки железнодорожных и трамвайных путей), применяют высокомарганцевую литую сталь 110Г13Л аустенитной структуры, содержащую 0,9 % С и 11,5 % Мп.

В литом состоянии структура стали состоит из аустенита и карбидов типа (Ре, Мп)3С, выделяющихся по границам аустенитных зерен, и ее прочность и ударная вязкость сильно снижены, поэтому литые детали подвергают закалке с нагревом до 1100 °C и охлаждению в воде. При такой температуре карбиды растворяются в аустените и сталь приобретает более устойчивую аустенитную структуру.

В условиях ударного воздействия и абразивного изнашивания в поверхностном слое стали образуются дефекты кристаллического строения (дислокации, дефекты упаковки), что приводит к поверхностному упрочнению. Повышение твердости и износостойкости в результате наклепа возможно при ударных нагрузках и холодной пластической деформации.

Из-за наклепа сталь 110Г13Л плохо обрабатывается резанием, поэтому детали или изделия из данной стали целесообразно изготовлять литьем без последующей механической обработки. Буква Л в конце марки этой стали означает «литейная».

43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов

К цветным металлам относятся медь, алюминий, магний, титан, свинец, цинк и олово, которые обладают ценными свойствами и применяются в промышленности, несмотря на относительно высокую стоимость. Иногда, когда это возможно, цветные металлы заменяют черными металлами или неметаллическими материалами (например, пластмассами).

Выделяют следующие группы цветных металлов и сплавов: легкие металлы и сплавы (с плотностью 3.0 г/см3); медные сплавы и специальные цветные сплавы – мельхиор, незильбер, драгоценные сплавы и т. д.

В промышленности по применению медь занимает одно из первых мест среди цветных металлов. Свойства меди – высокая пластичность, электропроводность, теплопроводность, повышенная коррозионная стойкость. Медь используется в электромашиностроении, изготовлении кабелей и проводов для передачи электроэнергии и служит основой для изготовления различных сплавов, широко применяемых в машиностроении.

Алюминий – легкий металл, который обладает высокой пластичностью, хорошей электропроводностью и коррозионной стойкостью. Применяется для изготовления электропроводов, посуды, для предохранения других металлов и сплавов от окисления путем плакирования. В машиностроении чистый алюминий применяется мало, потому что имеет невысокие механические свойства. Алюминий является основой для получения многих сплавов, широко применяемых в самолетостроении, авто– и вагоностроении, приборостроении. Алюминиевые сплавы бывают деформированными (упрочняемые при помощи термической обработки и не упрочняемые) и литейными. Дюралюминий – самый распространенный сплав, который используется в деформированном виде и укрепляется при помощи термической обработки.

Магний является наиболее распространенным металлом, имеет серебристо-белый цвет. Большое преимущество магния состоит в том, что это очень легкий металл. Главным недостатком является его малая стойкость против коррозии. Чистый магний не нашел распространения в технике, но применяется в качестве основы для производства легких сплавов.

Установлены следующие марки цветных металлов (ГОСТ):

алюминий – АВ1, АВ2, АОО, АО, А1, А2 и А3;

медь – МО, М1, М2, МЭ, М4;

олово – 01, 02, ОЭ и 04; свинец – СВ, СО, С1, С2, С3, С4;

цинк – ЦВ, ЦО, Ц1, Ц2, Ц3, Ц4;

магний – Мг1, Мг2.

Латуни. По сравнению с чистой медью латуни имеют большую прочность, пластичность и твердость, они более жидкотекучи и коррозионностойки.

Кроме простой латуни, применяются специальные латуни с добавками железа, марганца, никеля, олова, кремния. Количество легирующих компонентов в специальных латунях не превышает 7–8%. Специальные латуни имеют повышенные механические свойства; некоторые из них по прочности не уступают среднеуглеродис-той стали.

По ГОСТу латуни обозначаются буквой Л и цифрой, которая указывает количество меди в сплаве.


Елена Буслаева читать все книги автора по порядку

Елена Буслаева - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Материаловедение. Шпаргалка отзывы

Отзывы читателей о книге Материаловедение. Шпаргалка, автор: Елена Буслаева. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.