My-library.info
Все категории

Елена Буслаева - Материаловедение. Шпаргалка

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Елена Буслаева - Материаловедение. Шпаргалка. Жанр: Техническая литература издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Материаловедение. Шпаргалка
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
14 февраль 2019
Количество просмотров:
263
Читать онлайн
Елена Буслаева - Материаловедение. Шпаргалка

Елена Буслаева - Материаловедение. Шпаргалка краткое содержание

Елена Буслаева - Материаловедение. Шпаргалка - описание и краткое содержание, автор Елена Буслаева, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Шпаргалка содержит краткие и ясные ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Материаловедение». Издание может быть полезно всем студентам технических вузов, изучающим Дисциплину «Материаловедение».

Материаловедение. Шпаргалка читать онлайн бесплатно

Материаловедение. Шпаргалка - читать книгу онлайн бесплатно, автор Елена Буслаева

Арматуры, бензо– и маслосистемы, а также сварные детали изготавливают из деформируемых сплавов МА1, высоконагруженные детали – из МА14.

47. Титан и его сплавы

Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.

Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно – давлением, сваривается в защитной атмосфере. Широкое распространение получило вакуумное литье, в том числе вакуумно-дуговой переплав с расходуемым электродом.

Аллотропические модификации титана: низкотемпературная и высокотемпературная.

Различают две основные группы легирующих элементов в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °C): б-стабилизаторы (элементы, расширяющие область существования б-фазы и повышающие температуру превращения – А1, Оа, С) и в-стабилизаторы (элементы, суживающие б-область и снижающие температуру полиморфного превращения, – V, Мо, Сг).

Легирующие элементы делятся на две основные группы: элементы с большой (в пределе – неограниченной) и ограниченной растворимостью в титане. Элементы с ограниченной растворимостью вместе с титаном могут образовывать интерметаллиды, силициды и фазы внедрения.

Легирующие элементы влияют на эксплуатационные свойства титана (Ре, А1, Мп, Сг), повышают его прочность, но снижают эластичность и вязкость; А1, Zr увеличивают жаропрочность, а Мо, Zr, Та – коррозионную стойкость.

Классификация титановых сплавов. Структура промышленных сплавов титана – это твердые растворы легирующих элементов в б– и в-модификациях титана.

Виды термической обработки титановых сплавов.

Рекристаллизационный (простой) отжиг холоднодеформированных сплавов (650–850 °C).

Изотермический отжиг (нагрев до 780–980 °C с последующим охлаждением в печи до 530–680 °C, выдержка при этой температуре и охлаждение на воздухе), обеспечивающий высокую пластичность и термическую стабильность сплавов.

Двойной ступенчатый отжиг (отличается от изотермического тем, что переход от первой ступени ко второй осуществляется охлаждением сплава на воздухе с последующим повторным нагревом до температуры второй ступени), приводящий к упрочнению сплава и снижению пластичности за счет частичного протекания процессов закалки и старения.

Неполный отжиг при 500–680 °C с целью снятия возникающих при механической обработке остаточных напряжений.

Упрочняющая термическая обработка. Большинство титановых сплавов легировано алюминием, повышающим жесткость, прочность, жаропрочность и жаростойкость материала, а также снижающим его плотность.

α-титановые сплавы термической обработкой не упрочняются; их упрочнение достигается посредством легирования твердого раствора и пластической деформацией.

(α + β) – титановые сплавы характеризуются смешанной структурой и упрочняются термической обработкой, состоящей из закалки и старения.

Псевдо-β-титановые сплавы характеризуются высоким содержанием β-стабилизаторов и вызванным этим отсутствием мартенситного превращения. Сплавы характеризуются высокой пластичностью в закаленном состоянии и высокой прочностью в состаренном; они удовлетворительно свариваются аргонодуговой сваркой.

Литейные титановые сплавы. По сравнению с деформируемыми литейные сплавы имеют меньшую прочность, пластичность и выносливость, но более дешевы. Сложность литья титановых сплавов обусловлена активным взаимодействием титана с газами и формовочными материалами. Литейные сплавы ВТ5Л, ВТ14Л и ВТЗ-1Л по составу в основном совпадают с аналогичными деформируемыми сплавами (в то же время сплав ВТ14Л дополнительно содержит железо и хром).

Высокими технологическими свойствами обладает сплав ВТ5Л: он пластичен, не склонен к образованию трещин при литье, хорошо сваривается. Фасонные отливки из сплава ВТ5Л работают при температурах до 400 °C. Недостатком сплава является его невысокая прочность (800 МПа). двухфазный литейный сплав ВТ14Л подвергают отжигу при 850 °C вместо упрочняющей термической обработки, резко снижающей пластичность отливок.

Порошковые сплавы титана. Применение методов порошковой металлургии для производства титановых сплавов позволяет при тех же эксплуатационных свойствах, что и у литого или деформируемого материала, добиться снижения до 50 % стоимости и времени изготовления изделий. Титановый порошковый сплав ВТ6, полученный горячим изостатическим прессованием (ГИП), обладает теми же механическими свойствами, что и деформируемый сплав после отжига. Закаленному и состаренному деформируемому сплаву ВТ6 порошковый сплав уступает в прочности, но превосходит в пластичности.

Применение сплавов титана: обшивки самолетов, морских судов, подводных лодок; корпусов ракет и двигателей; дисков и лопаток стационарных турбин и компрессоров авиационных двигателей; гребных винтов; баллонов для сжиженных газов; емкостей для агрессивных химических сред и др.

48. Виды композиционных материалов. Строение, свойства, области применения

Композиционные материалы состоят из двух компонентов, объединенных различными способами в монолит при сохранении их индивидуальных особенностей.

Признаки материала:

– состав, форма и распределение компонентов определены заранее;

– состоят из двух компонентов и более различного химического состава, разделенных границей;

– обладает свойствами, отличными от свойств компонентов, взятых в отдельности;

– однороден в макромасштабе и неоднороден в микромасштабе;

– не встречается в природе, создан человеком.

Компоненты материала различны по геометрическому признаку. Матрицей называют компонент, который обладает непрерывностью по всему объему. Наполнителем – компонент прерывный, армирующий.

В композиционных материалах в качестве матриц используются металлы и их сплавы, полимеры органические и неорганические, керамические материалы. Свойства зависят от физико-химических свойств компонентов и прочности связи между ними. Компоненты для композиционного материала выбирают со свойствами, отличающимися друг от друга. Такие материалы – высокой удельной жесткости и удельной прочности.

Распространенные композиционные материалы с нуль-мерными наполнителями – металлическая матрица из металла или сплава. Композиционные материалы с равномерным распределением частиц упроч-нителя отличаются изотропностью свойств. Композиции, армированные дисперсными частицами получают методами порошковой металлургии.

Композиционные материалы с алюминиевой матрицей на основе алюминия упрочняются частицами А1203, полученные методом прессования алюминиевой пудры с последующим спеканием (САП).

Сплавы САП удовлетворительно деформируются в горячем состоянии, а сплавы САП-1 – и в холодном. САП легко обрабатываются резанием, удовлетворительно свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги.

Композиционные материалы с никелевой матрицей.

Упрочняющим компонентом являются токсичные частицы диоксида тория (ТИ02) или диоксида гафния (Hf02). Эти материалы обозначаются ВДУ-1 и ВДУ-2 соответственно. Композиционные материалы ВДУ-1 и ВДУ-2 пластичны, деформируются в широком интервале температур различными методами (ковка, штамповка, осадка, глубокая вытяжка). Для соединения деталей из сплавов типа ВДУ применяют высокотемпературную пайку либо диффузионную сварку для предотвращения расплавления. Сплавы ВДУ-2 применяют в авиационном двигателестроении.

Композиционные материалы с одномерными наполнителями упрочняются посредством одномерных элементов в форме нитевидных кристаллов, волокон (проволоки).

Волокна скрепляются матрицей в единый монолит. Матрица служит для защиты упрочняющего волокна от повреждений, является средой, передающей нагрузку на волокна, и перераспределяет напряжения в случае разрыва отдельных волокон.

Композиционные материалы на никелевой матрице

Армированию подвергают жаропрочные никелевые сплавы, чтобы увеличить время их работы и рабочую температуру до 1100–1200 °C. Для армирования никелевых сплавов применяют упрочнители: нитевидные кристаллы, проволоки тугоплавких металлов и сплавов, волокна углерода и карбида кремния.

Эвтектические композиционные материалы – сплавы эвтектического состава. В них упрочняющей фазой являются ориентированные кристаллы, которые образуются при направленной кристаллизации.

Способами направленной кристаллизации получают композиционные материалы на основе Al, Мд, Си, Со, Тк

Эвтектические композиционные материалы на алюминиевой основе


Елена Буслаева читать все книги автора по порядку

Елена Буслаева - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Материаловедение. Шпаргалка отзывы

Отзывы читателей о книге Материаловедение. Шпаргалка, автор: Елена Буслаева. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.