В самом факте возникновения изобретательской задачи уже присутствует противоречие: нужно что-то сделать, а как это сделать - неизвестно. Такие противоречия принято называть административными (АП). Выявлять административные противоречия нет необходимости, они лежат на поверхности задачи. Но и эвристическая, «подсказывательная» сила таких противоречий равна нулю: они не говорят, в каком направлении надо искать решение.
В глубине административных противоречий лежат технические противоречия (ТП): если известными способами улучшить одну часть (или один параметр) технической системы, недопустимо ухудшится другая часть (или другой параметр). Технические противоречия часто указаны в условиях задачи, но столь же часто исходная формулировка ТП требует серьезной корректировки. Зато правильно сформулированное ТП обладает определенной эвристической ценностью. Правда, формулировка ТП не дает указания на конкретный ответ. Но она позволяет сразу отбросить множество «пустых» вариантов: заведомо не годятся все варианты, в которых выигрыш в одном свойстве сопровождается проигрышем в другом.
Каждое ТП обусловлено конкретными физическими причинами. Возьмем для примера такую задачу:
Задача 4
При полировании оптических стекол необходимо под полировальник (он сделан из смолы) подавать охлаждающую жидкость. Пробовали делать в полировальнике сквозные отверстия и различные поры для подачи жидкости, но «дырчатая» поверхность полировальника работает хуже сплошной. Как быть?
Техническое противоречие здесь уже указано: охлаждающая способность «дырчатого» полировальника вступает в конфликт с его способностью полировать стекло. В чем причина конфликта? «Дырка» хорошо пропускает охлаждающую жидкость, но, естественно, не может сдирать частицы стекла. Твердые участки полировальника, наоборот, способны сдирать частицы стекла, но не в состоянии пропускать воду. Следовательно, поверхность полировальника должна быть твердой, чтобы сдирать частицы стекла, и «пустой», чтобы пропускать охлаждающую жидкость. Это - физическое противоречие (ФП): к одной и той же части системы предъявляются взаимопротивоположные требования.
В физических противоречиях столкновение конфликтующих требований предельно обострено. Поэтому на первый взгляд ФП кажутся абсурдными, заведомо неразрешимыми. Как сделать, чтобы вся поверхность полировальника была сплошной «дыркой» и в то же время сплошным твердым телом?! Но именно в этом, в доведении противоречия до крайности, и проявляется эвристическая сила ФП. Поскольку одна и та же часть вещества не может быть в двух разных состояниях, остается развести, разъединить противоречивые свойства простыми физическими преобразованиями. Можно, например, разделить их в пространстве: пусть объект состоит из двух частей, обладающих разными свойствами. Можно разделить противоречивые свойства во времени: пусть объект поочередно обладает то одним свойством, то другим. Можно использовать переходные состояния вещества, при которых на время возникает что-то вроде сосуществования противоположных свойств. Если, например, полировальник сделать из льда с вмороженными в него частицами абразива, лед при полирования будет плавиться, обеспечивая требуемое сочетание свойств: полирующая поверхность остается твердой и в то же время сквозь нее везде как бы проходит холодная вода.
КЛЮЧ К ПРОБЛЕМЕ: ЗАКОНЫ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ
Итак, нужны приемы, позволяющие выявлять и устранять физические противоречия, содержащиеся в изобретательских задачах. Эти приемы позволяют резко сократить поисковое поле и без «поштучной» проверки отбросить множество «пустых» вариантов.
Несколько приемов мы уже назвали: разделение противоречивых свойств в пространстве или во времени, использование переходных состояний веществ. А еще? Где взять набор приемов, достаточно богатый, чтобы решать самые различные изобретательские задачи? Ответ очевиден: ФП присущи только изобретательским задачам высших уровней, поэтому приемы устранения ФП надо искать в решениях этих задач. Практически это означает, что необходимо отобрать изобретения высших уровней и исследовать их описания. В таких описаниях обычно указаны исходная техническая система, ее недостатки и предлагаемая техническая система. Сопоставляя эти данные, можно выявить суть ФП и прием, использованный для его устранения.
Фонд описаний изобретений весьма велик: ежегодно в разных странах выдается около 300 тыс. патентов и авторских свидетельств. Для выявления современных приемов устранения ФП достаточно исследовать самый свежий «патентный слой» глубиной, скажем, в пять лет - это около 1,5 млн. изобретений. Цифра устрашающая. Однако первая же операция - отбор изобретений высших уровней - резко сокращает число описаний, подлежащих детальному исследованию. Изобретений пятого уровня очень мало - доли процента; четвертого уровня тоже немного - три-четыре процента. Если даже прихватить наиболее интересные изобретения третьего уровня, исследовать надо не более 10% изобретений в выделенном «патентном слое»: 150 тыс. описаний. Это - в идеальном случае. Для составления списка наиболее сильных приемов достаточен массив в 20-30 тыс. патентных описаний.
Хороший список приемов устранения ФП - уже немало. Но нужно уметь правильно выявлять противоречия, а также задать, когда и какой прием использовать, нужно располагать критериями для оценки полученных результатов. А для этого необходимо знать законы развития технических систем.
Развитие технических систем, как и любых других систем, подчиняется общим законам диалектики. Чтобы конкретизировать эти законы применительно именно к техническим системам, приходится опять-таки исследовать патентный фонд, но уже на значительно большую глубину. Нужно брать не «патентный слой», а, так сказать, «патентную скважину»: патентные и историко-технические материалы, отражающие развитие какой-то одной системы за 100-150 лет. Разумеется, для выявления универсальных законов нужна не одна, а многие «патентные скважины», - работа весьма и весьма сложная. Но, зная законы развития технических систем, можно уверенно отобрать наиболее эффективные приемы устранения противоречий и построить программу решения изобретательских задач.
Что такое объективные законы развития технических систем? Рассмотрим конкретный пример. Киносъемочный комплекс - типичная техническая система, включающая ряд элементов: киносъемочный аппарат, осветительные приборы, звукозаписывающую аппаратуру и т. д. Аппарат ведет съемку с частотой 24 кадра в секунду, причем при съемке каждого кадра затвор открыт очень небольшой промежуток времени, иногда всего одну тысячную секунды. А светильники работают на постоянном токе (или на переменном, но обладают большой тепловой инерцией) и освещают съемочную площадку все время. Таким образом, полезно используется незначительная часть энергии. В основном энергия расходуется на вредную работу: утомляет артистов, нагревает воздух.
Обратите внимание: основные элементы этой системы «живут» каждый в своем ритме. Представьте себе животное с мозгом, работающим по 24-часовому циклу, и лапами, предпочитающими действовать, скажем, по 10-часовому циклу: у мозга наступает время сна, а лапы бодрствуют, они полны сил, по их «часам» полдень, надо бегать... Эволюция безжалостно бракует такие организмы. Но в технике очень часто создают «организмы с несогласованной ритмикой», а потом долго мучаются из-за присущих им недостатков.
Один из объективных законов развития технических систем состоит в том, что системы с несогласованной ритмикой вытесняются более совершенными системами с согласованной ритмикой. Так, в приведенном примере нужны безынерционные светильники, работающие синхронно и синфазно вращению шторки объектива. Тогда резко уменьшится расход энергии, улучшатся условия работы артистов.
Приведем пример из другой области техники. Для обеспечения выемки угля бурят в пласту скважины, заполняют их водой и передают через нее импульсы давления. Частота импульсов определяется случайными факторами, а пласт имеет свою частоту колебаний. Опять обе части системы работают в разных ритмах - явное нарушение закона согласования ритмики. И вот появляется а. с. № 317 797, в нем предлагается частоту импульсов установить равной собственной частоте колебаний угольного массива. Изобретения («просто импульсы» и «импульсы с частотой, равной собственной частоте разбуренного массива») разделены промежутком в семь лет. Эти семь потерянных лет - плата за незнание законов развития технических систем.
Согласование ритмики частей системы - лишь один из законов, определяющих развитие технических систем. Используя «свод» таких законов, можно построить программу решения изобретательских задач. Она даст возможность, не блуждая по поисковому полю, выйти в район решения, т. е. сократить число вариантов, скажем, до десятка.