Важная роль отводится химии и в обеспечении работы различных систем подводных лодок, например системы гидравлики, имеющей прямое отношение к управлению энергетической установкой. Американские химики долго работали над созданием рабочих жидкостей для этой системы, способных действовать при высоком давлении (до 210 атмосфер), безопасных в пожарном отношении и неядовитых. Сообщалось, что для предохранения трубопроводов и арматуры системы гидравлики от коррозии при обводнении забортной водой в рабочую жидкость добавляется хромат натрия.
Разнообразные синтетические материалы — пенопласта, синтетический каучук, поливинилхлорид и другие широко используются на лодках для уменьшения шума механизмов и повышения их взрывостойкость Из таких материалов изготовляются звукоизолирующие покрытия и кожухи, амортизаторы, звукоизолирующие вставки в трубопроводы, звукозаглушающие подвески.
Химические аккумуляторы энергии, например в виде так называемых пороховых аккумуляторов давления, начинают применяться (правда, пока еще в экспериментальном порядке) для аварийного продувания цистерн главного балласта. Твердотопливные заряды используются на ракетных подводных лодках США и для обеспечения подводного старта ракет «Поларис». При сгорании подобного заряда в присутствии пресной воды в специальном генераторе образуется парогазовая смесь, которая выталкивает ракету из пусковой трубы.
Чисто химические источники энергии используются на некоторых типах состоящих на вооружении и разрабатываемых за рубежом торпед. Так, двигатель американской быстроходной парогазовой торпеды Мк16 работает на спирте, воде и перекиси водорода. Находящаяся в разработке торпеда Мк48, как сообщалось в печати, имеет газовую турбину, работа которой обеспечивается твердотопливным зарядом. Некоторые экспериментальные реактивные торпеды снабжены силовыми установками, работающими на реагирующем с водой топливе.
В последние годы нередко говорилось о новом типе «единого двигателя» для подводных лодок, основанного на новейших достижениях химии, в частности на использовании как источника энергии так называемых топливных элементов. Подробно о них говорится далее, в специальной главе этой книги. Пока лишь укажем, что в каждом из таких элементов протекает электрохимическая реакция, обратная электролизу. Так, при электролизе воды на электродах выделяются кислород и водород. В топливном же элементе к катоду подводится кислород, а к аноду — водород, и ток, снимаемый с электродов, идет во внешнюю для элемента сеть, где его можно использовать для привода гребных электродвигателей подводной лодки. Другими словами, в топливном элементе химическая энергия непосредственно преобразуется в электрическую без промежуточного получения высоких температур, как в обычной цепочке электростанции: котел — турбина — электрогенератор.
Материалом для электродов в топливных элементах могут служить никель, серебро и платина. В качестве топлива возможно применение жидкого аммиака, нефти, жидкого водорода, метилового спирта. В качестве окислителя обычно используется жидкий кислород. Электролитом может быть раствор едкого калия. В одном западногерманском проекте топливных элементов для подводной лодки предлагается использовать перекись водорода высокой концентрации, при разложении которой получаются одновременно и топливо (водород) и окислитель (кислород).
Энергетическая установка с топливными элементами в случае ее применения на лодках позволила бы отказаться от дизель-генераторов и аккумуляторных батарей. Она обеспечила бы также бесшумную работу главных двигателей, отсутствие вибрации и высокий коэффициент полезного действия — около 60–80 процентов при перспективном удельном весе установки до 35 килограммов на киловатт. По расчетам иностранных специалистов, расходы па постройку подводной лодки с топливными элементами могут быть вдвое-втрое ниже затрат на строительство атомной подводной лодки.
Печать сообщала, что в США велись работы по созданию наземного прототипа лодочной энергетической установки с топливными элементами. В 1964 году начались испытания такой установки на сверхмалой исследовательской подводной лодке «Стар-1», мощность гребного двигателя ее всего лишь 0,75 киловатт. По данным журнала «Шиф унд Хафен», опытная установка с топливными элементами создана также в Швеции.
Большинство зарубежных специалистов склоняется к тому, что мощность энергетических установок этого рода не превзойдет 100 киловатт, а время их непрерывной работы 1000 часов. Наиболее рациональным поэтому считается применять топливные элементы прежде всего на сверхмалых и малых подводных лодках исследовательского или диверсионно-разведывательного назначения с автономностью около одного месяца.
Создание топливных элементов не исчерпывает всех случаев применения достижений электрохимии в подводном деле. Так, на атомных подводных лодках США применяются щелочные никель-кадмиевые аккумуляторы, при зарядке которых выделяется не водород, а кислород. На некоторых дизельных подводных лодках этой страны вместо кислотных аккумуляторных батарей применяют щелочные серебряно-цинковые аккумуляторные батареи, обладающие втрое большей удельной энергией.
Еще более высоки характеристики серебряно-цинковых аккумуляторов одноразового действия для электроторпед подводных лодок. В сухом состоянии (без электролита) они могут храниться годами, не требуя никакого ухода. А приведение их в готовность занимает буквально доли секунды, причем аккумуляторы могут содержаться в снаряженном виде 24 часа. Габариты и вес подобных батарей в пять раз меньше, чем эквивалентных им свинцовых (кислотных). Некоторые типы торпед, которые состоят на вооружении американских подводных лодок, имеют батареи с пластинами из магния и-хлорида серебра, работающие на морской воде и также обладающие повышенными характеристиками.
Сверхпрочность и сверхскорость
Химия — одна из наиболее бурно развивающихся отраслей науки. Ее достижения в создании новых материалов все чаще заставляют специалистов пересматривать возможности и перспективы решения разнообразных технических проблем. Не составляет исключения и подводное кораблестроение, в частности, такая его проблема, как увеличение прочности корпуса подводного корабля. На каждый квадратный метр поверхности подводной лодки, погрузившейся на глубину, скажем, 200 метров, давит столб воды весом свыше 200 тонн. А ведь современные подводные корабли уходят и на значительно большие глубины. Противостоять такому чудовищному гидростатическому давлению может лишь корпус из высокопрочной стали. Но только ли из стали?
Несмотря на высокую прочность, сталь тяжела, велика ее плотность. С этим недостатком конструкторы в ряде случаев уже не могут мириться. Известно, что в авиации, ракетной технике со сталью все увереннее соперничают титан и его сплавы. За рубежом предпринимаются попытки использовать этот новый металл в кораблестроении. Сообщалось, что в США построена малая экспериментальная подводная лодка с корпусом из титанового сплава длиной 16 метров.
Но у титана свои недостатки. Он с трудом поддается обработке, плохо сваривается обычными методами, чувствителен к ударным нагрузкам. Вот почему иностранные исследователи ищут преемника стали и среди неметаллических материалов. Тем более, что с появлением пластмасс стало возможным создавать материалы с заранее заданными свойствами. Однако прочности-то порой пластмассам не хватает. Пример подал бетон. Пронизанный стальной арматурой, он превращается в крепчайший железобетон. Попробовали подобный метод для пластмасс: в синтетическую смолу включили арматуру из стеклянного волокна — и родился стеклопластик.
Плотность его в четыре раза ниже, чем у стали, а прочность лишь незначительно меньше.
Стеклопластики уже нашли себе не одну область применения на подводных лодках. Из них, например, изготовляют надстройки и ограждения рубок, обтекатели выдвижных устройств (перископов, антенн, воздушных шахт) и легкие корпуса спасательных аппаратов (рис. 5). Применение таких пластмассовых надстроек и ограждений снимает заботы о коррозии, позволяет достичь экономии в весе высоко расположенных частей корпуса, а значит, повысить остойчивость корабля. Сокращаются расходы, поскольку ограждение из стеклопластика при массовом производстве, как сообщалось, обходится втрое дешевле алюминиевого.
Рис. 5. Модель спасательной подводной лодки с легким корпусом из стеклопластика
На экспериментальной лодке США «Дельфин» с глубиной погружения до 600–900 м из стеклопластика изготовлены баллоны сжатого воздуха. Иностранная печать отмечает такие качества этих баллонов, как вдвое меньший вес сравнительно с металлическими, повышенную ударостойкость, неподверженность коррозии и немагнитные свойства их материала. Из стеклопластика изготовлены также корпуса твердотопливных двигателей баллистических ракет «Поларис» А-2 и А-3.