My-library.info
Все категории

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии. Жанр: Прочая научная литература издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Курс общей астрономии
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
29 январь 2019
Количество просмотров:
171
Читать онлайн
П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии краткое содержание

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии - описание и краткое содержание, автор П.И.Бакулин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Курс общей астрономии читать онлайн бесплатно

Курс общей астрономии - читать книгу онлайн бесплатно, автор П.И.Бакулин

2OD Ч ОЕЧ cos a = OD2 – AD2 + ОЕ2 – АЕ2 + 2AD Ч АЕ Ч cos A.(1.31)

Из прямоугольных плоских треугольников ОАЕ и ОАD следует: OD2 – AD2 = R2; OE2 – AE2 = R2; AD = R tg b ; АЕ = R tg с ;

Подставив эти соотношения в формулу (1.31) и произведя соответствующие сокращения и переносы, получим cos а = cos b cos с + sin b sin с cos A ,(1.32)

т.е. косинус стороны сферического треугольника равен произведению косинусов двух других его сторон плюс произведение синусов тех же сторон на косинус угла между ними. Формулу (1.32) можно написать для любой стороны треугольника. Напишем ее, например, для стороны b: cos b = cos с cos a + sin с sin a cos B и, подставив в нее cos сх из формулы (1.32), получим cos b = cos с (cos b cos с + sin b sin с cos A) + sin с sin a cos B. Раскрыв скобки и перенеся первый член правой части в левую, будем иметь: cos b (l – cos2 с) = sin b sin с cos с cos A + sin c sin a cos B. Заменив (1 – cos2 с) на sin2 с и сократив все на sin c, окончательно получим sin a cos В = sinc cos b – cos c sin b cos A,(1.33)

т.е. произведение синуса стороны на косинус прилежащего угла равняется произведению синуса другой стороны, ограничивающей прилежащий угол, на косинус третьей стороны минус произведение косинуса стороны, ограничивающей прилежащий угол, на синус третьей стороны и на косинус угла, противолежащего первой стороне. Формула (1.33) называется формулой пяти элементов. Ее можно написать по аналогии и для произведений sin a cos С, sin b cos A, sin b cos С, sin с cos A и sin с cos В. Решим теперь равенство (1.32) относительно cos A : Возведя обе части последнего равенства в квадрат и вычтя их из 1, получим:

или

Раскрыв скобки и разделив обе части этого выражения на sin2 а, получим Полученное выражение совершенно симметрично относительно a, b и с, и заменяя A на В, а на b или A на С и а на с, напишем откуда

(1.34) или

т.е. синусы сторон сферического треугольника пропорциональны синусам противолежащих им углов; или отношение синуса стороны сферического треугольника к синусу противолежащего угла есть величина постоянная. Три выведенных соотношения (1.32), (1.33), (1.34) между сторонами и углами сферического треугольника являются основными; из них можно получить много других формул сферической тригонометрии. Мы ограничимся выводом одной только формулы для прямоугольного сферического треугольника. Положим А = 90°; тогда sin А = 1, cos A = 0, и из формулы (1.33) получим sin a cos В = sin с cos b. Разделив обе части этого равенства на sin b и заменив на на , согласно (1.34), будем иметь: ctg B = sin c ctg b или (1.35)

т.е. отношение тангенса одного катета прямоугольного сферического треугольника к тангенсу противолежащего угла равно синусу другого катета.

§ 29. Параллактический треугольник и преобразование координат

Параллактическим треугольником называется треугольник на небесной сфере, образованный пересечением небесного меридиана, вертикального круга и часового круга светила. Его вершинами являются полюс мира Р, зенит Z и светило М. Если светило М находится в западной половине небесной сферы (рис. 16), то сторона ZP

(дуга небесного меридиана) равна 90° – j , где j – широта места наблюдения; сторона ZM (дуга вертикального круга) равна зенитному расстоянию светила z = 90°

– h, где h – высота светила; сторона РМ (дуга часового круга) равна полярному расстоянию светила р = 90° – d , где d – склонение светила; угол PZM = 180° – А, где A – азимут светила; угол ZPM = t, т.е. часовому углу светила; угол PMZ = q называется параллактическим углом. Если светило находится в восточной половине небесной сферы (рис. 17), то значения сторон параллактического треугольника те же, что и в случае пребывания светила в западной половине, но значения углов при вершинах Z и Р иные, а именно: угол PZM = А – 180°, а угол ZPM = 360° – t . Вид параллактического треугольника для одного и того же светила зависит от широты места наблюдения j (от взаимного расположения Р и Z) и от момента наблюдения, т.е. от часового угла t. Применяя основные формулы сферической тригонометрии к параллактическому треугольнику (рис. 16) и считая исходными сторону РМ и угол t, получим cos (90° – d ) = cos (90° – j ) cos z + sin (90° – j ) sin z cos (180° – A), sin (90° – d ) sin t = sin z sin (180° – A), sin (90° – d ) cos t = sin (90°– j ) cos z – cos (90° – j ) sin z cos (180° – A) или (1.36)

Формулы (1.36) служат для вычисления склонения светила d и его часового угла t (а затем и прямого восхождения a = s – t) по измеренным (или известным) его зенитному расстоянию z и азимуту A в момент звездного времени s). Иными словами, они служат для перехода от горизонтальных координат светила к его экваториальным координатам. Если исходными считать сторону ZM = z и угол 180° – A, то основные формулы в применении к параллактическому треугольнику напишутся в следующем виде: cos z = cos (90° – j ) cos (90° – d ) + sin (90° – j ) sin (90° – d ) cos t, sin z sin (180° – A) = sin (90° – d ) sin t, sin z cos (180° – A) = sin (90° – j ) cos (90° – d ) – cos (90° – j ) sin (90°

– d ) cos t или

(1.37)

Формулы (1.37) служат для вычисления зенитного расстояния z и азимута светила A (для любого момента звездного времени s и для любой широты j ) по известному склонению светила d и его часовому углу t = s – a . Иными словами, они служат для перехода от экваториальных координат светила к его горизонтальным координатам. Кроме того, формулы (1.36) и (1.37) используются при вычислении моментов времени восхода и захода светил и их азимутов в эти моменты, а также при решении двух очень важных задач практической астрономии – определения географической широты места наблюдения j и определения местного звездного времени s.

Для перехода от экваториальных координат светила (a и d ) к его эклиптическим координатам (l и b ) и наоборот можно вывести формулы, аналогичные формулам

(1.36) и (1.37). Только в этом случае надо основные формулы § 28 применить к сферическому треугольнику небесной сферы, вершинами которого являются полюс мира Р, полюс эклиптики П и светило М, а стороны и углы имеют значения, указанные на рис. 18.

§ 30. Рефракция

Видимое положение светила над горизонтом, строго говоря, отличается от вычисленного по формуле (1.37). Дело в том, что лучи света от небесного тела, прежде чем попасть в глаз наблюдателя, проходят сквозь атмосферу Земли и преломляются в ней, а так как плотность атмосферы увеличивается к поверхности Земли, то луч света (рис. 19) все более и более отклоняется в одну и ту же сторону по кривой линии, так что направление ОМ1 , по которому наблюдатель О видит светило, оказывается отклоненным в сторону зенита и не совпадающим с направлением ОМ2 (параллельным ВМ), по которому он видел бы светило при отсутствии атмосферы.

Явление преломления световых лучей при прохождении ими земной атмосферы называется астрономической рефракцией. Угол M1OM2 называется углом рефракции или рефракцией r . Угол ZOM1 называется видимым зенитным расстоянием светила z', а угол ZOM2 – истинным зенитным расстоянием z. Непосредственно из рис. 19 следует z – z' = r или z = z' + r , т.е. истинное зенитное расстояние светила больше видимого на величину рефракции r . Рефракция как бы приподнимает светило над горизонтом. По законам преломления света луч падающий и луч преломленный лежат в одной плоскости. Следовательно, траектория луча МВО и направления ОМ2 и OM1 лежат в одной вертикальной плоскости. Поэтому рефракция не изменяет азимута светила, и, кроме того, равна нулю, если светило находится в зените. Если светило находится в кульминации, то рефракция изменяет только его склонение и на ту же величину, что и зенитное расстояние, так как в этом случае плоскости его часового и вертикального кругов совпадают. В остальных случаях, когда эти плоскости пересекаются под некоторым углом, рефракция изменяет и склонение, и прямое восхождение светила. Точная теория рефракции очень сложна и рассматривается в специальных курсах. Рефракция зависит не только от высоты светила над горизонтом, но и от состояния атмосферы, главным образом от ее плотности, которая сама является функцией, в основном температуры и давления. При давлении В мм. рт. ст. и температуре t° С приближенное значение рефракции (1.38)

Следовательно, при температуре 0° С и при давлении 760 мм рефракция r = 60”,25 tg z'.(1.39)

По формулам (1.38) и (1.39) рефракция вычисляется в тех случаях, когда видимое зенитное расстояние z'

70° формулы (1.38) и (1.39) дают ошибку больше 1», увеличивающуюся при дальнейшем приближении к горизонту до бесконечности, тогда как действительная величина рефракции в горизонте составляет около 35'. Поэтому для зенитных расстояний z'> 70° рефракция определяется путем сочетания теории со специальными наблюдениями. Вследствие рефракции наблюдается изменение формы дисков Солнца и Луны при их восходе или заходе. Рефракция нижних краев дисков этих светил у горизонта почти на 6' больше рефракции верхних краев, а так как горизонтальные диаметры рефракцией не изменяются, то видимые диски Солнца и Луны принимают овальную форму.

§ 31. Суточный параллакс

Координаты небесных тел, определенные из наблюдений на поверхности Земли, называются топоцентрическими. Топоцентрические координаты одного и того же светила в один и тот же момент, вообще говоря, различны для различных точек на поверхности Земли. Различие это заметно лишь для тел Солнечной системы и практически не ощутимо для звезд (меньше 0»,00004). Из множества направлений, по которым светило видно из разных точек Земли, основным считается направление из центра Земли. Оно дает геоцентрическое положение светила и определяет его геоцентрические координаты. Угол между направлениями, по которым светило М' было бы видно из центра Земли и из какой-нибудь точки на ее поверхности, называется суточным параллаксом светила (рис. 20). Иными словами, суточный параллакс есть угол р', под которым со светила был бы виден радиус Земли в месте наблюдения.


П.И.Бакулин читать все книги автора по порядку

П.И.Бакулин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Курс общей астрономии отзывы

Отзывы читателей о книге Курс общей астрономии, автор: П.И.Бакулин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.