10. В стихотворении «Не верьте», напечатанном, естественно, в разделе «Ироническая поэзия», его автор рекомендует не верить ни во что:
…Не верьте в колдовскую власть огня:
Горит, пока кладут в него дровишки.
Не верьте в златогривого коня
Ни за какие сладкие коврижки!
Не верьте в то, что звёздные стада
Несутся в бесконечной круговерти.
Но что же вам останется тогда?
Не верьте в то, что я сказал.
Не верьте.
В.Прудовский
Но реально ли такое всеобщее неверие? Судя по всему, оно противоречиво и, значит, логически невозможно.
11. Допустим, что, вопреки общему убеждению, неинтересные люди всё-таки есть. Соберём их мысленно вместе и выберем из них самого маленького по росту, или самого большего по весу, или какого-то другого «самого…». На этого человека интересно было бы посмотреть, так что мы напрасно включили его в число неинтересных. Исключив его, мы опять найдём среди оставшихся «самого…» в том же самом смысле и т.д. И всё это до тех пор, пока не останется только один человек, которого не с кем будет уже сравнивать. Но, оказывается, этим он как раз и интересен! В итоге мы приходим к выводу, что неинтересных людей нет. А началось рассуждение с того, что такие люди существуют.
Можно, в частности, попробовать найти среди неинтересных людей самого неинтересного из всех неинтересных. Этим он будет, без сомнения, интересен, и его придётся исключить из неинтересных людей. Среди оставшихся опять-таки найдётся наименее интересный и т.д.
В этих рассуждениях определённо есть привкус парадоксальности. Допущена ли здесь какая-нибудь ошибка и если да, то какая?
12. Допустим, что вам дали чистый лист бумаги и поручили описать этот лист на нём же. Вы пишите: это лист прямоугольной формы, белый, таких-то размеров, изготовленный из прессованных волокон древесины и т.д.
Описание как будто закончено. Но оно явно неполное! В процессе описания объект изменился: на нём появился текст. Поэтому к описанию нужно ещё добавить: а кроме того, на этом листе бумаги написано: это лист прямоугольной формы, белый…и т.д. до бесконечности.
Кажется, что здесь парадокс, не так ли?
Хорошо известен детский стишок:
У попа была собака,
Он её любил,
Она съела кусок мяса,
Он её убил.
Убил и закопал,
А на плите написал:
«У попа была собака…»
Смог ли этот любивший свою собаку поп когда-нибудь закончить надгробную надпись? Не напоминает ли составление этой надписи полное описание листа бумаги на нём самом?
13. Один автор даёт такой «тонкий» совет: «Если маленькие хитрости не позволяют достичь желаемого, прибегните к большим хитростям». Этот совет предлагается под заголовком «Маленькие хитрости». Но относится ли он на самом деле к таким хитростям? Ведь «маленькие хитрости» не помогают, и как раз по этой причине приходится прибегнуть к данному совету.
14. Назовём игру нормальной, если она завершается в конечное число ходов. Примерами нормальных игр могут служить шахматы, шашки, домино: эти игры всегда завершаются или победой одной из сторон, или ничьей. Игра, не являющаяся нормальной, продолжается бесконечно, не приводя ни к какому результату. Введём также понятие сверхигры: первым ходом такой игры является установление того, какая именно игра должна играться. Если, к примеру, вы и я намереваемся играть в сверхигру и мне принадлежит первый ход, я могу сказать: «Давайте играть в шахматы». Тогда вы в ответ делаете первый ход шахматной игры, допустим, e2 – e4, и мы продолжаем партию до её завершения (в частности, в связи с истечением времени, отведённого турнирным регламентом). В качестве своего первого хода я могу предложить сыграть в крестики-нолики и т.п. Но игра, которая мною выбирается, должна быть нормальной; нельзя выбирать игру, не являющуюся нормальной.
Возникает проблема: является сама сверхигра нормальной или нет? Предположим, что это – нормальная игра. Так как первым её ходом можно выбрать любую из нормальных игр, я могу сказать: «Давайте играть в сверхигру». После этого сверхигра началась, и следующий ход в ней ваш. Вы вправе сказать: «Давайте играть в сверхигру». Я могу повторить: «Давайте играть в сверхигру» и таким образом процесс может продолжаться бесконечно. Следовательно, сверхигра не относится к нормальным играм. Но в силу того, что сверхигра не является нормальной, своим первым ходом в сверхигре я не могу предложить сверхигру; я должен выбрать нормальную игру. Но выбор нормальной игры, имеющей конец, противоречит тому доказанному факту, что сверхигра не принадлежит к нормальным.
Итак, является сверхигра нормальной игрой или нет?
Пытаясь ответить на этот вопрос, не следует, конечно, идти по лёгкому пути чисто словесных разграничений. Проще всего сказать, что нормальная игра – это игра, а сверхигра – всего лишь розыгрыш.
Какие другие парадоксы напоминает этот парадокс сверхигры, являющейся одновременно и нормальной и ненормальной?
Байиф Ж. К. Логические задачи. – М., 1983.
Бурбаки Н. Очерки по истории математики. – М., 1963.
Гарднер М. А ну-ка догадайся! – М.: 1984.
Ивин А.А. По законам логики. – М., 1983.
Клини С. К. Математическая логика. – М., 1973.
Смаллиан P.M. Как же называется эта книга? – М.: 1982.
Смаллиан P.M. Принцесса или тигр? – М.: 1985.
Френкель А., Бар-Хиллел И. Основания теории множеств. – М., 1966.
Какое значение имеют парадоксы для логики?
Какие решения предлагались для парадокса «Лжец»?
В чём особенности семантически замкнутого языка?
В чём существо парадокса множества обычных множеств?
Имеется ли решение спора Протагора и Еватла? Какие решения предлагались для этого спора?
В чём сущность парадокса неточных имён?
В чём могло бы заключаться своеобразие логических парадоксов?
Какие выводы для логики следуют из существования логических парадоксов?
В чём различие между устранением и объяснением парадокса? Какое будущее ожидает логические парадоксы?
Темы рефератов и докладов
Понятие логического парадокса
Парадокс «Лжец»
Парадокс Рассела
Парадокс «Протагор и Еватл»
Роль парадоксов в развитии логики
Перспективы разрешения парадоксов
Разграничение языка и метаязыка
Устранение и разрешение парадоксов
О многом шла речь в этой книге. Ещё больше интересных и важных тем осталось за её пределами.
Логика – это особый, самобытный мир со своими законами, условностями, традициями, спорами и т.д. То, о чём говорит эта наука, знакомо и близко каждому. Но войти в её мир, почувствовать его внутреннюю согласованность и динамику, проникнуться его своеобразным духом непросто.
Если книга в какой-то мере помогла в этом, задача автора выполнена.
Хотелось бы пожелать, чтобы читатель – если он впервые познакомился теперь с логикой – не остановился на первом шаге, особенно если это молодой читатель.