My-library.info
Все категории

Ричард Фейнман - Характер физических законов

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - Характер физических законов. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Характер физических законов
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
245
Читать онлайн
Ричард Фейнман - Характер физических законов

Ричард Фейнман - Характер физических законов краткое содержание

Ричард Фейнман - Характер физических законов - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В основу этой книги, больше 50 лет состоящей в списке международных бестселлеров, легли знаменитые лекции Ричарда Фейнмана, прочитанные им в 1964 году в Корнеллском университете. В этих лекциях прославленный физик рассказывает о фундаментальных законах природы и величайших достижениях мировой физики, не утративших своей актуальности и по сей день, – рассказывает простым доступным языком, понятным даже самому обычному читателю. Чего только стоит его знаменитая аналогия с мокрым человеком, который пытается вытереться мокрым полотенцем, на примере которой он объясняет закон сохранения энергии!..

Характер физических законов читать онлайн бесплатно

Характер физических законов - читать книгу онлайн бесплатно, автор Ричард Фейнман

Вполне понятно, что доказательства и способы мышления, найденные математиками, становятся для физиков могучими и полезными орудиями. Но и рассуждения физиков часто приносят пользу математикам.

Математики любят придавать своим рассуждениям возможно более общую форму. Если я скажу им: «Я хочу поговорить об обычном трехмерном пространстве», – они ответят: «Вот вам все теоремы о пространстве п измерений». – «Но у меня только три измерения». – «Хорошо, подставьте n = 3!» Оказывается, что многие сложные теоремы выглядят гораздо проще, если их применить к частному случаю. А физика интересуют только частные случаи; он никогда не интересуется общим случаем. Он говорит о чем-то конкретном; ему не безразлично, о чем говорить. Он хочет обсуждать закон тяготения в трехмерном пространстве; ему не нужны произвольные силы в пространстве п измерений. Он стремится к сокращениям, потому что математики готовят свои выводы для более широкого круга проблем. И поступают предусмотрительно, ибо в конце концов бедный физик всегда вынужден возвращаться и говорить: «Простите, но в прошлый раз вы хотели мне что-то сказать о четырех измерениях».

Когда вы знаете, о чем идет речь, знаете, что одни символы означают силы, другие – массы, инерцию и т. д., вы можете обратиться за помощью к здравому смыслу, к интуиции. Вы видели разные вещи и более или менее знаете, как будут происходить разные явления. Несчастный математик переводит все это на язык уравнений, и, поскольку символы для него ничего не означают, у него лишь один компас – математическая строгость и тщательность в доказательствах. Физик же, который более или менее знает, каким должен быть ответ, может позволить себе догадки и приходит к цели довольно быстро. Излишняя математическая строгость не очень полезна в физике. Но нельзя ставить это в вину математикам. Нельзя требовать, чтобы они действовали всегда с оглядкой на физику и делали то, что полезно ей. У них свои задачи. Если вы хотите чего-то иного, займитесь этим сами.

Следующий вопрос: когда мы пытаемся найти новые законы, стоит ли опираться на интуицию и философские принципы – «мне не нравятся локальные свойства» или «мне нравятся локальные свойства», «мне не нравится воздействие на расстоянии» или «мне нравится воздействие на расстоянии»? В какой степени полезны модели? Интересно, что модели очень часто помогают в работе, и большинство преподавателей физики пытаются учить тому, как пользоваться моделями, чтобы выработать хорошую физическую интуицию. Но всегда выходит так, что величайшие открытия абстрагируются от модели и модель оказывается ненужной. Максвелл создал электродинамику, наполнив пространство массой воображаемых шестеренок и зубчатых колесиков. Но колесики и шестеренки мы отбросили, а теория осталась. Дирак[10] же открыл правильные законы релятивистской квантовой механики, просто угадав уравнение. Угадывание уравнения, по-видимому, очень хороший способ открывать новые законы. Это лишний раз доказывает, что математика дает глубокое описание природы, а всякая попытка выразить природу, опираясь на философские принципы или интуитивные механические аналогии, не приводит к серьезным результатам.

Меня всегда беспокоило, что, согласно физическим законам, как мы понимаем их сегодня, требуется бесконечное число логических операций в вычислительной машине, чтобы определить, какие процессы происходят в сколь угодно малой области пространства за сколь угодно малый промежуток времени. Как может все это уложиться в крохотном пространстве? Почему необходима бесконечная работа логики для понимания того, что произойдет на крохотном участке пространства-времени? Поэтому я часто высказывал предположение, что в конце концов физика не будет требовать математической формулировки. Ее механизм раскроется перед нами, и законы станут простыми, как шахматная доска, при всей ее видимой сложности. Но это предположение того же порядка, что и склонности других людей – «это мне нравится», «это мне не нравится», – а тут нельзя основываться на личных предубеждениях.

Подводя итоги, я хочу воспользоваться словами Джинса, который сказал, что «Великий Архитектор, по-видимому, был математиком». Тем, кто не знает математики, трудно постичь подлинную, глубокую красоту природы. Сноу[11] говорил о двух культурах. Я думаю, что разница между этими культурами сводится к разнице между людьми, которые понимают, и людьми, которые не понимают математики в той мере, в какой это необходимо, чтобы вполне оценить природу.

Жаль, конечно, что тут нужна математика, потому что многим людям она дается трудно. Говорят – не знаю, правда ли это, – что один царь, которого Евклид пытался обучить геометрии, стал жаловаться на трудности. Евклид ответил: «Нет царского пути к геометрии». И его действительно нет. Физику нельзя перевести ни на какой другой язык. И если вы хотите узнать Природу, оценить ее красоту, то нужно понимать язык, на котором она разговаривает. Она дает информацию лишь в одной форме, и мы не вправе требовать от нее, чтобы она изменила свой язык, стараясь привлечь наше внимание.

Никакими интеллектуальными доводами вы не сможете передать глухому ощущение музыки. Точно так же никакими интеллектуальными доводами нельзя передать понимание природы человеку «другой культуры». Философы пытаются рассказать о природе без математики. Я пытаюсь описать природу математически. Но если меня не понимают, то не потому, что это невозможно. Может быть, моя неудача объясняется тем, что кругозор этих людей чересчур ограничен и они считают человека центром Вселенной.

Лекция 3. Великие законы сохранения

Изучая физику, вы обнаруживаете, что существует огромное количество сложных и очень точных законов – законы гравитации, электричества и магнетизма, законы ядерных взаимодействий и т. д. Но все это многообразие отдельных законов пронизано некими общими принципами, которые так или иначе содержатся в каждом законе. Примерами таких принципов могут служить законы сохранения, некоторые свойства симметрии, общая форма квантовомеханических принципов и тот приятный для одних и досадный для других факт, что все законы являются математическими. В этой лекции я хочу поговорить о законах сохранения.

Физик употребляет обычные слова необычным образом. Для него закон сохранения означает, что существует число, которое остается постоянным вне зависимости от того, когда вы его подсчитаете – скажем, сейчас или через некоторое время, после того как в природе произойдет множество изменений. Вот, например, закон сохранения энергии. Имеется величина, которую вы можете вычислять по определенным правилам, и ответ у вас всегда будет одинаковым, что бы ни случилось.

Понятно, что такие принципы могут оказаться полезными. Предположим, что физика, или, вернее, природа, – это огромная шахматная доска с миллионами фигур и мы пытаемся выяснить законы движения фигур. Великие боги, сидящие за доской, играют очень быстро, и нам трудно уследить за их ходами. Все же мы улавливаем некоторые правила – те правила, для выяснения которых не обязательно следить за каждым ходом. Например, предположим, что на доске стоит только один слон, белопольный. Он движется только по диагонали и поэтому всегда остается на белых квадратах. Если мы отвернемся, а затем посмотрим снова на доску, за которой играют боги, то белопольный слон будет по-прежнему стоять на доске, может быть в другом месте, но все равно на белом квадрате. Такова природа законов сохранения. Мы можем узнать кое-что об игре, не вдаваясь в доскональное ее изучение.

Правда, в шахматах этот закон может оказаться не таким уж полезным. Если мы отвернулись надолго, то может случиться, что за это время слона успели съесть, пешка прошла в ферзи и Бог решил, что выгоднее иметь слона вместо ферзя, а слон этот оказывается чернопольным. К сожалению, может выясниться, что некоторые из наших сегодняшних законов физики также несовершенны, но я опишу их вам такими, какими мы видим их в настоящее время.

Я сказал, что мы употребляем обычные слова в качестве научных терминов, а в заглавии этой лекции стоит слово «великий» – «Великие законы сохранения». Это не термин: я вставил его лишь затем, чтобы придать заглавию более патетическое звучание, и вполне мог бы назвать лекцию просто «Законы сохранения». Есть несколько законов сохранения, которые верны лишь приблизительно, но иногда оказываются полезными, их мы могли бы назвать «малыми» законами сохранения. Позже я расскажу об одном или двух из них. Но основные законы, которым посвящена эта лекция, насколько нам известно сегодня, совершенно точны.

Проще всего понять закон сохранения электрического заряда; с него я и начну. Существует число, полный электрический заряд мира, которое остается постоянным, что бы ни произошло. Если вы теряете заряд в одном месте, то находите его в другом. Сохранение относится только к полному электрическому заряду. Это опытным путем установил Фарадей[12]. Он экспериментировал с огромным металлическим шаром, к наружной поверхности которого был присоединен очень чувствительный гальванометр, чтобы следить за зарядом на поверхности; гальванометр был такой, что даже небольшой заряд давал сильные отклонения. Внутри шара Фарадей собрал разнообразное электрическое оборудование. Он создавал заряды, натирая стеклянные палочки кошачьим мехом, и строил большие электростатические машины, так что внутренность шара походила на лабораторию из фильма ужасов. Но в ходе всех его экспериментов на поверхности не появлялось никакого заряда; создать заряд было невозможно. Хотя стеклянная палочка заряжалась положительно, когда ее терли кошачьим мехом, мех получал точно такое же количество отрицательного заряда, и суммарный заряд всегда был равен нулю. Если бы внутри шара заряд создавался, то гальванометр, присоединенный снаружи, показал бы это. Итак, полный заряд сохраняется.


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Характер физических законов отзывы

Отзывы читателей о книге Характер физических законов, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.