Ознакомительная версия.
Прежде чем мы продолжим, стоит обратить внимание на одну важную деталь: условие «если два вероятных события, А и В, не зависят друг от друга». Предположим, в самолете осталось 1 свободное место, а регистрацию не прошли еще 2 пассажира. Предположим, что работники аэропорта по своему опыту знают: в 2 из 3 случаев пассажир, забронировавший место, все же прибывает. Воспользовавшись правилом умножения, бортпроводница у входа на посадку может прийти к следующему выводу: вероятность того, что ей придется иметь дело с недовольным пассажиром, равна 2/3 × 2/3, то есть примерно 44%. С другой стороны, вероятность того, что пассажир не явится вовсе, а самолет так и улетит с одним незанятым местом, равна 1/3 × 1/3, то есть примерно 11%. Но это при условии того, что пассажиры не зависят друг от друга. А если, скажем, они летят вместе? В таком случае вышеприведенные выкладки не действуют. Вероятность того, что прибудут оба пассажира, равна 2 из 3 — такая же, что и вероятность появления одного пассажира. Важно не забывать, что суммарная вероятность из простых вероятностей получается только при условии, если события никоим образом не связаны друг с другом.
Правило, которым мы только что воспользовались, вполне возможно применить и к римской идее неполных доказательств: вероятность ошибочности двух независимых друг от друга неполных доказательств равна 1 из 4, таким образом, два неполных доказательства составляют 3/4 доказательства, а не целое. Римляне применили сложение там, где следовало применить умножение.
Однако существуют ситуации, в которых вероятности следует суммировать, и тут мы переходим к следующему закону. Потребность в нем возникает, когда нам надо узнать: каковы шансы того, что произойдет одно либо другое событие, в противоположность предыдущей ситуации, когда нужно было узнать: каковы шансы того, что и одно и другое событие произойдут вместе. Закон гласит: «Если событие состоит из ряда элементарных исходов А, В, С и т. д., то вероятность А или В равна сумме отдельных вероятностей А и В, а сумма вероятностей всех возможных исходов (А, В, С и т. д.) равна 1 (те. 100%)». Если вы хотите узнать, какова вероятность того, что два независимых друг от друга события, А и В, произойдут, вам надо будет произвести умножение; если вы хотите узнать вероятность того, что любое из двух взаимоисключающих событий, А или В, произойдет, вы производите сложение. Вернемся к нашему самолету. Когда бортпроводнице нужно будет суммировать вероятности, а не умножать их? Предположим, она хочет узнать, какова вероятность того, что явятся либо оба пассажира, либо не явится ни один. В таком случае она должна сложить отдельные вероятности, которые согласно произведенным нами выше подсчетам будут равны 55%.
Эти три правила, такие простые, и лежат в основе теории вероятностей. Если применять их должным образом, можно многое понять в механизмах природы и повседневной жизни. Принимая решения, мы постоянно пользуемся этими правилами. Однако, как и римские законодатели, не всегда корректно.
Легко задним числом качать головами и писать книжки вроде «Этих ужасных римлян» («Схоластик», 1994). Но чтобы предупредить ничем не оправданное самодовольство, в заключение этой главы рассмотрим некоторые способы, при помощи которых те самые основные правила, о которых я рассказал, могут быть применены и к нашей правовой системе. Оказывается, этого достаточно, чтобы отрезвить любого опьяненного своим культурным превосходством.
Радует тот факт, что в наше время неполных доказательств не существует. Однако существует что-то вроде 999 000/1 000 000 доказательства. Об этом знают специалисты, которых привлекают на уголовном процессе к анализу ДНК с места преступления на предмет ее совпадения с ДНК подозреваемого. Насколько надежны такие сравнения? Когда впервые ввели анализ ДНК, целый ряд специалистов отметили: теперь ошибка исключена. В наше же время признают, что вероятность совпадения ДНК с места преступления с ДНК случайного человека равна менее 1 из 1 млн или 1 из 1 млрд. При такой-то вероятности едва ли можно винить присяжного за мысли вроде: «Тюрьма по нему плачет!». Но существует и другая статистика, в которую присяжных обычно не посвящают, и связана она с тем фактом, что совершают ошибки лаборатории: когда берут образец или производят с ним манипуляции, когда случайно путают образцы, подменяют один другим, неверно интерпретируют результаты или же ошибаются в отчетах. Каждая из этих ошибок случается редко, однако не реже совпадения образца ДНК с ДНК случайного человека. К примеру, в филадельфийской криминалистической лаборатории признались, что при расследовании случая изнасилования перепутали контрольный образец обвиняемого с образцом жертвы, да и в компании «Селлмарк Диагностикc», выполняющей анализы, рассказали о подобном случае{42}. К сожалению, сила данных по ДНК анализу такова, что оклахомский суд, основываясь на этих данных, приговорил некого Тимоти Дарема к более чем 3 тыс. лет тюремного заключения, и это несмотря на показания одиннадцати свидетелей, которые утверждали, что на момент совершения преступления Дарем находился в другом штате. Оказалось, что на начальном этапе анализа в лаборатории не удалось полностью разделить ДНК насильника и ДНК жертвы, в результате чего получившаяся комбинация дала положительный результат при сравнении с ДНК Дарема. Позднее повторный анализ выявил ошибку и Дарема выпустили, однако к тому времени он провел за решеткой почти четыре года{43}.
Данные подсчетов частоты ошибок, возникших по вине человека, различаются, однако многие специалисты говорят о примерно 1%. Но так как частоту ошибок по многим лабораториям никто не проверял, в судах редко принимают во внимание показания относительно подобной общей статистики. Даже если бы и принимали, как бы присяжные смогли оценить их? Большинство присяжных допускают, что при наличии двух типов ошибок — 1 из 1 млрд при случайном совпадении и 1 на 100 при ошибочном совпадении в лаборатории — общая частота ошибок должна находится где-то посередине, скажем, 1 из 500 млн. Цифра, по мнению присяжных, не дающая поводов для обоснованного сомнения.
А ход мысли такой. Раз обе ошибки крайне маловероятны, можно не обращать внимания на вероятность и случайного совпадения, и ошибки лаборатории. Следовательно, находим вероятность того, что случится либо одна ошибка, либо другая. Что, по правилу сложения, равно: вероятность ошибки лаборатории (1 из 100) + вероятность случайного совпадения (1 из 1 млрд). Поскольку второе в 10 млн меньше первого, то в весьма хорошем приближении вероятность обеих ошибок равна вероятности более вероятной ошибки, то есть, 1 из 100. Таким образом, можно пренебречь предупреждением специалистов о возможности случайного совпадения, и обратить внимание на гораздо более вероятный риск лабораторных ошибок. А ведь зачастую суды не позволяют адвокатам предоставлять эти данные! Выходит, что мнения о надежности анализа ДНК преувеличены.
И это не отдельный вопрос. Использование математических выкладок в современной правовой системе сопряжено с затруднениями ничуть не в меньшей степени, чем в Риме много столетий назад. Одним из наиболее известных дел, служащих примером правильного и неправильного применения вероятности в юриспруденции, является дело «Штат против Коллинзов», слушания по которому проходили в 1968 г. в калифорнийском Верховном суде{44}. Вот выдержка из судебного решения:
18 июня 1964 г. около 11:30 миссис Хуанита Брукс, совершавшая покупки, шла вдоль переулка в Сан-Педро, г. Лос-Анджелес. За собой она катила тележку с плетеной корзиной, в которой лежали продукты, а поверх — кошелек. Миссис Брукс опиралась на трость. Когда она наклонилась, чтобы поднять пустую коробку, ее внезапно сбил человек — она не видела и не слышала его приближения. После падения миссис Брукс не сразу пришла в себя — она больно ударилась. Подняв голову, миссис Брукс успела заметить убегавшую молодую женщину. По словам миссис Брукс, женщина была среднего сложения, одета «во что-то темное», а о цвете волос миссис Брукс отозвалась как о «чем-то среднем между русым и светлой блондинкой», но светлее, чем волосы обвиняемой Джанет Коллинз, как выяснилось во время суда. Сразу после случившегося миссис Брукс обнаружила, что исчез ее кошелек, в котором было долларов 35 или 40.
Примерно в то же самое время, как произошло ограбление, Джон Басс, живущий в том же переулке, только в самом конце, поливал газон перед домом. Его внимание привлекли «плач и крики». Он повернулся на звуки и увидел, как из переулка выбегает женщина и садится в желтую машину через дорогу. Машину тут же завели; она рванула, на скорости объезжая другую машину, и при этом проехала совсем рядом с Бассом. Басс заметил, что за рулем сидел негр с усами и бородой… Другие свидетели описывали машину как желтую, желтую с кремово-белым верхом, желтую с верхом цвета яичной скорлупы. О самой машине отзывались как о большой либо средних размеров.
Ознакомительная версия.