Линнеева система классификации создавалась для растений. Многие из них тогда уже обладали общепринятыми названиями, которые в той или иной форме перекочевали в новую систему. Микроорганизмы тоже постепенно получали имена, по мере того как все новые обитатели микромира идентифицировались в течение столетия, прошедшего после самого первого включения микробов в Линнееву систему («инфузории», 1758 год). Бактерии, существа, которых явно никто не наблюдал прежде, именовались довольно-таки произвольно, как кому взбредет в голову: латинским словом, описывающим их форму, видимую под микроскопом, или ссылкой на то, где их впервые обнаружили, или именем их первооткрывателя, или чем-нибудь более причудливым.
В некоторых таких названиях все-таки содержатся крупицы полезной информации. Скажем, bacillus – палочкообразное существо, coccus – сферическое, vibrio – напоминающее запятую. Так что холерный вибрион Vibrio cholerae – это организм, имеющий форму запятой и как-то связанный с холерой. Большое спасибо за такие невероятно подробные сведения.
Лишь немногие описательные названия приносят еще кое-какие данные. Виды, образующие цепочку сфер наподобие ожерелья, именуются Streptococci, но если они соединяются в своего рода виноградную гроздь, это уже Staphylococci; обе разновидности широко распространены, большинство из вас наверняка о них слышали.
Но это лишь начало. Названий видов, конечно, неизмеримо больше. Есть и названия для более высоких классификационных уровней. Например, филум – набор родов. К примеру, филум Firmicutes (имеющих относительно твердую (firm) кутикулу [20] или клеточную стенку) включает такие роды, как Lactobacillus, Clostridium, Eubacterium и Ruminococcus, в каждом из которых имеется свой набор видов. При этом у каждого вида может иметься множество подвидов, или штаммов. На этом этапе наступает своего рода таксономическая усталость, и новоописанной разновидности обычно просто присваивают порядковый номер.
Разнообразие известных нам бактерий неуклонно растет. А значит, соответствующих названий требуется много. И я намерен использовать их здесь, чтобы интересующиеся могли потом почитать о них подробнее. Впрочем, обычно вполне достаточно представлять себе этих существ как бактерии X, Y или Z. Их названия зачастую почти ничего вам не скажут. Важно то, что делают эти бактерии и какие у них гены. К тому же, откровенно говоря, иногда микроорганизмы носят совершенно идиотские названия. Вряд ли мы наградим похвальными баллами того, кто решил дать одному из родов филума Bacterioidetes название Bacterioides (за этим наверняка стоит какая-то своя история, но мне на нее, признаться, наплевать). Стоило бы снять баллы с того, кто назвал род, чьей метаболической виртуозности нам еще предстоит подивиться в главе 5. Род этот именуется так: Bacteroides thetaiotaomicron. Звучит красиво, если вы не знаете, что Тета-Йота-Омикрон – название одного из студенческих братств американского Виргинского политехнического института.
Специалистов учат ориентироваться в этой трясине исторических палимпсестов и мелких тщеславий. Всем остальным приходится справляться с таксономической неразберихой по мере своих скромных сил. Но в наши дни, как правило, незачем сопоставлять названия: у нас имеются куда более точные методы выяснения того, насколько тесны родственные связи между теми или иными бактериями, где они обитают и за счет чего живут. Быстрое появление целого ряда новых методов позволило нам в полной мере оценить богатство собственного микробного груза. Давайте же обратимся к имеющимся в нашем распоряжении инструментам, которые позволяют ученым исследовать микробиом, а потом уж подробнее поговорим о том, какие открытия сделаны с их помощью.
Глава 3. Невидимые жизни
Микроскопы показали, что бактерии существуют. Но простое разглядывание этих существ дает лишь ограниченную информацию. Совершенно различные бактерии зачастую кажутся с виду очень похожими. Чтобы понять, с какими разновидностями бактерий мы имеем дело, как они живут и что способны делать, требуются новые способы разглядывания. Нужно заглянуть внутрь клеток или по крайней мере изучить материал, извлеченный из них. Наука, развиваясь бок о бок с технологией, учится по-новому видеть изучаемые объекты [21]. За последние два десятка лет ученые многое узнали о нашем микробиоме.
До этого в микробиологии человека существовала одна досадная проблема. Ученые знали, что в нас обитает множество микробов, особенно в кишечнике. Однако большинство из них сопротивлялось попыткам перенести их в лабораторию. Их убивало присутствие кислорода, либо им требовалось для выживания какое-то таинственное вещество, которое никак не удавалось выявить.
Проблему, можно сказать, обнаружили и проигнорировали – как в науках о человеке, так и в микробиологии как таковой. В середине 1980-х на нее вновь обратили внимание. Джеймс Стейли из Вашингтонского университета назвал ее «великой аномалией подсчета микробов в чашке Петри» [22]. Вместе с коллегой он напомнил научной общественности, что количество бактерий, видимое под микроскопом, к примеру, в свежеотобранном образце почвы, тысячекратно превышает количество бактерий из того же образца, которое удается заставить расти на чашке Петри. Дав обзор других методов оценки микробного разнообразия, появившихся в начале 1930-х годов, Стейли и его соавтор призвали специалистов как можно внимательнее относиться к описанию всего набора изучаемых разновидностей микробов. Однако их обзор, ориентированный на микробиологов, касался в основном лишь водных и почвенных экосистем. Специалистам же по медицинской микробиологии приходилось иметь дело с другими (весьма многочисленными) научными работами, касающимися относительно небольшого набора патогенов. При таком различии в подходах науке удивительно ловко удавалось проявлять избирательное отношение к предметам исследования, при котором известные расхождения или аномалии остаются неизученными.
Теперь дело обстоит иначе. В наши дни все сходятся во мнении, что человеческий микробиом – штука сложная и важная. И нам уже мало изучения лишь тех видов, которые легко вырастить в культуре. Придумываются все новые способы изучения более капризных микробов. Такие методы как раз и позволили Дэвиду Релману добавить множество новых видов в каталог бактерий, найденных во рту при первом, сравнительно простом, анализе.
Видеть невидимое
Исследователи микробиома имеют дело не с самыми мелкими объектами. Это прерогатива физиков – изучение частиц и взаимодействий, совершенно недоступных нашим органам чувств и потому вызывающих понятную озадаченность. Но и микробиомная наука по сути делает видимыми те вещи, о которых мы никогда бы иначе не узнали. И каждый раз, когда ученые видят нечто новое, рождается целый ряд гипотез насчет того, что же найдено и что оно делает. Эти гипотезы в свою очередь требуют новых видов экспериментов. Начиная с рубежа веков, над этим успели потрудиться многие изобретательные умы. Вот вам краткий рассказ об инструментарии исследователей микробиома и о том, чего удалось достичь при помощи этих инструментов.
Новый мир первым делом следует нанести на карту. Эти работы активно ведутся. Микробиология сейчас переживает ту же стадию, что и науки о живом в период, когда писком моды считалась естественная история (естествознание). В течение нескольких веков биология сводилась к присваиванию организмам названий, классификации животных, записыванию их повадок и особенностей поведения.
На этом уровне биологи добыли массу данных. Современные технологии отлично умеют хранить и обрабатывать информацию. Ключевая технология здесь – ДНК-секвенирование, позволяющее узнать порядок следования нуклеотидных оснований («химических букв») в каждой нити ДНК; они-то и кодируют хранящуюся в ней генетическую информацию. Скорость развития этого метода превосходит скорость развития любых других технологий в истории. Часто отмечают, что рост производительности компьютеров за последние полвека (обычно выражаемое как количество процессоров в одной микросхеме) следует так называемому закону Мура. Гордон Мур, один из основателей компании Intel, в 1965 году предположил, что число транзисторов в интегральной микросхеме удваивается каждые 2 года и в дальнейшем растет теми же темпами. Пока его «закон» соблюдается. Результат – резкое увеличение вычислительной мощи компьютеров и резкое падение их стоимости.