стали возникать проблемы, далеко выходящие за собственно генетические рамки.
Когда Пауль Берг открыл явление переноса генов, его самого это открытие повергло в шок: если любой ген одного организма может быть перенесен в другой организм, то что из этого может получиться?! Не перемешаем ли мы все живое на Земле? Основатель генной инженерии первым предположил возможные отрицательные последствия своего открытия.
В 1974 году Берг отправил в крупнейшие научные журналы письмо, в котором призвал приостановить как минимум на год любые операции с рекомбинантной ДНК и созвать всемирную конференцию для обсуждения потенциальных рисков таких технологий. Он и сам приложил большие усилия к организации этой конференции. В ней должны были участвовать ученые-биологи, медики и юристы. Последним предстояло оценить моральную сторону подобных деяний, то есть соединения генов низших организмов с генами человека. Страх того, что мир искусственных монстров может внезапно вырваться из пробирки в окружающую среду, был очень велик.
Неужели этот страх оправдан и мы должны ограничивать себя в познании? Ежедневно на планете Земля появляются сотни новых видов живых существ и сотни видов исчезают бесследно. Процесс естественного создания нового генетического текста идет постоянно — за счет переноса генов, за счет мутации от ультрафиолета, естественной радиации, да и просто от случайных событий при копировании текста ДНК. Миллионы видов, триллионы особей, квадриллионы случайных событий... А остаются существовать только те варианты генетического текста, благодаря которым их носители случайно, но наилучшим образом приспособились к окружающей среде. Сравните окружающую среду для бактерии на капустном листе и в тепличных лабораторных условиях. В лаборатории нет ни перепадов температур, ни аномальной влажности, ни наличия конкурирующих видов — все только для одного клона, обладающего ценными качествами. Но именно поэтому все бактериальные штаммы, все линии клеток, которые используются в генной инженерии, могут существовать только в лабораторных условиях — в природе они сразу погибнут.
За почти полвека, прошедшие со времени Асиломарской конференции, технологии значительно шагнули вперед. Вместо человека-ученого, который ставил уникальные эксперименты и открывал что-то новое в природе, сегодня роботизированные комплексы могут делать все операции по клонированию, анализу клеток, секвенированию генома (чтению генетического текста). Нужен лишь техник-лаборант, который умеет обращаться с реактивами и выключать свет.
КОНФЕРЕНЦИЯ В АСИЛОМАРЕ
Первая и последняя конференция по рекомбинантной ДНК и генной инженерии состоялась в 1975 году в Асиломаре, Калифорния, США.
В конференции, проходившей на ядерном полигоне, приняло участие более сотни специалистов из разных областей. Кстати, тогда вклад нашей страны в генетические исследования был оценен весьма достойно: пять ведущих биологов СССР принимали участие в этом обсуждении. О главной теме конференции можно судить по карикатурам, которые тогда появились: сидят ученые в каком-то бункере и обсуждают, что нужно сделать, чтобы созданная ими жизнь не вырвалась наружу. А в советских школах на уроках биологии шутили, что это будет как в мультфильме «Бременские музыканты», когда появилась ослиная голова и закукарекала, или перенесут какой-нибудь ген трактору, и тот замычит.
С одной стороны, это доказывает, что природа на самом деле устроена достаточно сложно (и не просто же так за открытия, которые подарили человечеству новые технологии, несколько десятилетий назад присуждались Нобелевские премии). С другой стороны, благодаря ученым-первооткрывателям сегодня эти эксперименты стали обыденной технологией, которую каждый может воспроизвести на кухне. Интернет полон информации о том, как это сделать и каких результатов добиваются люди.
Недавно даже появились люди, которые почему-то стали называть себя хакерами в биологии — биохакерами. В бытовых условиях они пытаются воспроизвести то, чем занимаются большие биотехнологические корпорации. Они выделяют ДНК, проводят простейшие опыты по молекулярному клонированию и пытаются модифицировать свой организм... Короче, «развлекаются». Они уже могли бы нанести миру большой вред в смысле получения новых и опасных микроорганизмов, однако пока, к счастью, ничего, кроме вреда, нанесенного самим себе, от них нет.
Работа с генами вне клетки
Благодаря открытию генетической рекомбинации человечество получило возможность работать с генами, которыми, как оказалось, можно манипулировать вне организма. Работа эта непростая. Например, надо получить ген, то есть вырезать из полного генетического текста всего пару предложений, а для этого сделать два разрыва в ДНК человека. В коротеньком генетическом тексте бактериальной клетки, который у кишечной палочки, любимицы молекулярных биологов и генных инженеров, в тысячу раз меньше, чем у человека, фермент рестрикции делает только один разрыв, чтобы можно было вставить туда вырезанный ген.
Сегодня рынок рекомбинантных технологий исчисляется триллионами долларов. В 2020 году объем этого рынка, приходящийся только на медицину, составил более шестисот миллиардов долларов. А начиналось все с инсулина, производство которого до сих пор составляет порядка пятидесяти процентов всей медицинской части рынка. Другие составляющие — это онкология, аутоиммунные заболевания и, конечно, вакцины, изготовленные на основе рекомбинантных технологий.
Широко применяются рекомбинантные технологии и в сельском хозяйстве, в том числе в растениеводстве. Дело в том, что у растений, как и у многих видов животных, существуют свои бактерии и вирусы — точно такой же инструментарий, как тот, что используется для разработки медицинских технологий или промышленных биотехнологий. Это значит, что с помощью вирусов растений можно делать ускоренный перенос генов между различными их видами. Рекомбинантные технологии позволяют улучшать пищевые свойства растений, повышать их сопротивляемость вредителям и урожайность.
Медицина и разработка методов интенсивного земледелия для решения проблемы голода — это два важнейших направления, основанных на рекомбинантных технологиях, которые позволили чуть больше чем за сто лет увеличить среднюю продолжительность жизни человека в развитых странах почти на пятнадцать лет — с шестидесяти пяти до восьмидесяти лет.
Продукты генной инженерии
Давайте подробнее рассмотрим, что дала нам генная инженерия. Прежде всего, это возможность синтезировать с помощью бактерий белки человека, например инсулин, о котором мы уже говорили, или различные интерлейкины, интерфероны и другие цитокины — «гормоны» иммунной системы. Все они синтезированы в бактериальных клетках, — благодаря этому мы имеем возможность покупать в аптеках препараты, их содержащие.
Сегодня генно-инженерным путем производится множество синтетических антител, направленных