My-library.info
Все категории

Михаил Ахманов - Вода, которую мы пьем

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Михаил Ахманов - Вода, которую мы пьем. Жанр: Прочая научная литература издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Вода, которую мы пьем
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
31 январь 2019
Количество просмотров:
188
Читать онлайн
Михаил Ахманов - Вода, которую мы пьем

Михаил Ахманов - Вода, которую мы пьем краткое содержание

Михаил Ахманов - Вода, которую мы пьем - описание и краткое содержание, автор Михаил Ахманов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга представляет собой серьезное исследование и одновременно увлекательное повествование, посвященное проблеме качества питьевой воды. Автор уделяет особое внимание способам очистке воды в домашних условиях, оценивает эффективность и полезность фильтров, предлагаемых отечественными и зарубежными фирмами. Работая над книгой, исследователь собрал сведения о качестве питьевой воды в разных регионах России, получил консультации ведущих специалистов. Книга будет интересна всем, кого заботит собственное здоровье, которое, как известно напрямую связано с качеством питьевой воды.

Вода, которую мы пьем читать онлайн бесплатно

Вода, которую мы пьем - читать книгу онлайн бесплатно, автор Михаил Ахманов

В Петербурге имеется пять водопроводных станций (ВС), расположенных вниз по течению Невы в следующем порядке: Южная (ЮВС) – в районе Рыбацкого, Северная (СВС) – в районе Веселого поселка, Волковская (ВВС) – у начала Обводного канала, Главная (ГВС) – около Смольного, Петроградская (ПВС) – на Большой Невке.

Очищают воду у нас хорошо, не хуже, чем в Лондоне или Париже, но эта очищенная вода поступает в водопроводную сеть по старым ржавым трубам, вдобавок насыщенной бактериальной флорой. Естественно, интенсивность загрязнения воды в трубах зависит от времени, в течение которого она добирается до крана потребителя. В районах, расположенных вблизи водопроводных станций, вода не успевает захватить слишком много микробов и ржавчины, но длина труб, проложенных в отдаленные районы, – десятки километров. Утром и днем вода в них движется медленно и насыщается бактериями и железом. Напомню, что отдаленные районы – «спальные»; утром и днем их обитатели на работе. В этот период водозабор невелик, и вода застаивается в трубах. Застаивается она и в тупиковых незакольцованных сетях. Кроме того, возможны разовые случаи ухудшения воды, связанные с сезонными изменениями, дождями и паводками, а также ремонтом водопроводов. В настоящий момент ведется реконструкция магистральной водопроводной сети, старые железные трубы заменяют на трубы из полимерных материалов, что отражается на качестве воды в разных городских районах не в лучшую сторону.

Остановлюсь на двух наиболее актуальных проблемах, связанных с содержанием тяжелых металлов в воде и вредных продуктов хлорирования воды. Данным проблемам посвящены статьи, опубликованные в журнале «Экологическая химия» [6, 18, 19].

Тяжелые металлы. Начну с проблемы, связанной с ними. Процитирую два фрагмента статьи на эту тему [19]. Авторы пишут: «Бытующее представление о том, что в водопроводных сетях города происходит существенное загрязнение питьевой воды тяжелыми металлами, имеет весьма общий характер и нуждается в качественной и количественной конкретизации». В статье описаны исследования, проведенные в 1997–1998 гг., после чего сделан вывод: «Полученные результаты не подтверждают представление о том, что в водопроводных сетях Санкт-Петербурга происходит массовое загрязнение питьевой воды тяжелыми металлами. Случаи, когда концентрация металлов превосходит ПДК, единичны и касаются только Al и Fe».

Суть исследования заключалась в следующем: в 1997 и 1998 гг. брались пробы невской воды около всех пяти станций водозабора (то есть воды до очистки), пробы воды после очистки на ВС (до выпуска в водопровод) и пробы воды «на кране» в пяти точках города (то есть воды, прошедшей по трубам). В этих трех типах проб определялось содержание металлов, а результаты сводились в таблицы и сравнивались между собой и с ПДК. Выбрав интересующие нас данные (вода после очистки и «на кране»), я составил свою табл. 3.4, которую предлагаю вашему вниманию.

Таблица 3.4. Концентрация легких и тяжелых металов и кремния в воде Петербурга (в мкг/л)

Примечание . В графе «станция, диапазон» даны минимальная и максимальная концентрации металла, измеренные в воде после обработки на ВС; в графе «кран, диапазон» – минимальная и максимальная концентрации металла, измеренные в воде «на кране»; в графе «кран, среднее» – их средняя величина. В пяти верхних позициях приведены содержания полезных ионов натрия, магния, калия и кальция, а также кремния (попросту – песка). В семи нижних позициях расположены металлы бор, барий, медь, марганец, стронций, титан и цинк, причем концентрации их меньше ПДК где в пять, а где – в сто раз (данные ПДК для титана приведены из работы [6]).

Из таблицы мы видим, насколько мягкая невская вода – содержание ионов жесткости даже по верхней границе диапазона в 10–15 раз меньше ПДК, и протекание воды по трубам на это обстоятельство никак не влияет. На концентрацию таких металлов, как бор, барий, медь, марганец, стронций, титан и цинк, перемещение воды от станции к потребителю тоже не влияет.

Самые интересные результаты относятся к железу и алюминию: во-первых, после прохождения по трубам их концентрация возрастает, а во-вторых, пиковые значения превосходят ПДК в два-восемь раз. Насколько часто это случается? Рассмотрим самую криминальную ситуацию по железу в 1998 г.: диапазон 10—2400 мкг/л, среднее 156 мкг/л, при ПДК 300 мкг/л. Диапазон 10—2400 означает, что разброс измеренных концентраций был гигантский, на два порядка, но если среднее равно 156, то получается, что высокие значения – больше трехсот, а тем более одна-две тысячи – замерялись очень редко. Это радует. Но, с другой стороны, пять точек города, в которых изучалась вода «на кране», не очень удалены от ВС – кроме, возможно, одной; и, возможно, именно в этой точке замерены большие концентрации железа. А что происходит в самых удаленных районах: в Купчино, на Юго-Западе, на Гражданке и в Озерках? Вопрос неясен, а потому стоит позаботиться о фильтре.

Но не думайте, что авторы работы [19] пытаются нас успокоить. Вовсе нет; они указывают: «В водопроводной сети происходит интенсивное загрязнение воды железом; концентрация элемента в питьевой воде по сравнению с содержанием его на выходе из ВС увеличивается не менее чем в три-четыре раза. В 1997 г. ПДК была превышена трижды: в марте в сети ЮВС (560 мкг/л), в сентябре в сети ЮВС (630 мкг/л) и в сети ГВС (350 мкг/л), а в 1998 г. – дважды в сети ГВС (май – 2400 и август – 330 мкг/л)». Загрязнение железом однозначно связано с ржавыми водопроводными трубами, а примесь алюминия появляется оттого, что при подготовке воды на ВС используют соединения алюминия.

Авторы статьи [6] в отличие от авторов статьи [19] производили анализ только водопроводной воды в одной-трех точках города, зато делали это на протяжении десяти лет и определяли в воде не только металлы, но и вредные органические примеси. В табл. 3.5 представлены результаты работ двух групп независимых исследователей. Сопоставим полученные данные.

Таблица 3.5. Содержание тяжелых металлов в питьевой воде Петербурга (в мкг/л)

Примечание . Данные таблицы приведены по материалам статей [19] (римск. I) и [6] (римск. II).

Сравнение результатов этих двух работ свидетельствует о нестабильности содержаний металлов в воде из крана, очень сильно зависящей от района города, состояния водопроводных труб и климатических изменений. Но завершить тему о металлах я хочу мажорным аккордом, самым приятным выводом из работы [19]: в силу гидрологических особенностей Невы в ее воде все-таки гораздо меньше алюминия и железа, чем в других реках нашей планеты.

Хлорирование воды. Проблема хлорорганики заключается в следующем:

а) на водопроводных станциях хлорируют воду, чтобы уничтожить болезнетворные микроорганизмы;

б) согласно российским стандартам на выходе из ВС допускается присутствие в питьевой воде 500 мкг/л свободного хлора и в сумме около 10 000 мкг/л различной органики – нефть, фенол и т. д. [6];

в) в зависимости от района и скорости водорасхода в жилых домах вода добирается к нашему крану от нескольких часов до половины суток и более. За это время хлор успевает прореагировать с остаточной органикой, отчасти превратив ее в весьма вредные хлорорганические соединения. Иными словами, происходит вторичное загрязнение питьевой воды, связанное с технологией ее микробиологической очистки на ВС.

Рассмотрим этот вопрос по материалам статей [6, 18]. Сравнивать их результаты вряд ли стоит, так как методика исследований была существенно различной: в [6], как описано в предыдущем разделе, изучались пробы, взятые из крана в нескольких петербургских районах, а в статье [18] моделировался процесс дезинфекции воды из рек Нева и Суда (Череповец). Речную воду обеззараживали тремя способами, принятыми на ВС (стандартная процедура хлорирования, хлорирование с последующим озонированием, хлорирование с озонированием и рядом дополнительных очистных мероприятий), после чего определяли вредную органику и выясняли, стало ли ее больше или меньше по сравнению с примесями в исходной речной воде.

Не вдаваясь в детали, перечислю основные результаты этих работ. В статье [6] приведены следующие данные. Установлено, что на протяжении 1990–1999 гг. содержание в воде крезолов, хлороформа и фенолов было значительным и приближалось к ПДК, а временами превосходило соответствующий норматив. Зато ДДТ (пестицид), ацетон и нитраты присутствовали в незначительных количествах: ДДТ – 0,15 мкг/л при ПДК 100 мкг/л, ацетон – 1 мкг/л при ПДК 2200 мкг/л, а нитраты – 1000–2000 мкг/л при ПДК 45 000 мкг/л. Что касается результатов, опубликованных в работе [18], то выводы неутешительны: во-первых, при дезинфекции воды содержание вредных примесей может как уменьшаться, так и увеличиваться; во-вторых, могут возникать новые хлорорганические соединения; в-третьих, озонирование усиливает генерацию этих новообразований.


Михаил Ахманов читать все книги автора по порядку

Михаил Ахманов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Вода, которую мы пьем отзывы

Отзывы читателей о книге Вода, которую мы пьем, автор: Михаил Ахманов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.