My-library.info
Все категории

О. ОРЕ - Приглашение в теорию чисел

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе О. ОРЕ - Приглашение в теорию чисел. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Приглашение в теорию чисел
Автор
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
218
Читать онлайн
О. ОРЕ - Приглашение в теорию чисел

О. ОРЕ - Приглашение в теорию чисел краткое содержание

О. ОРЕ - Приглашение в теорию чисел - описание и краткое содержание, автор О. ОРЕ, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.

Приглашение в теорию чисел читать онлайн бесплатно

Приглашение в теорию чисел - читать книгу онлайн бесплатно, автор О. ОРЕ

Чтобы закончить наше исследование для простых чисел, заметим, что 2 = 12 + 12.

Для того чтобы проверить, является ли составное число z суммой двух квадратов, разложим его на простые множители

z = p1α1 p2α2 •… • pkαk. (5.3.7)

Число z оказывается суммой двух квадратов тогда и только тогда, когда каждое простое число pi вида 4п + 3 входит в разложение в четной степени.

Примеры. Число z = 198 = 2 • З2 • 11 не является суммой двух квадратов, так как 11 имеет вид 4n + 3 и входит в разложение в первой степени.

Число z = 194 = 2 • 97 является суммой двух квадратов, так как ни один из его простых множителей не является числом вида 4n + 3. Действительно, z = 132 +52.

Вернемся к нашей первоначальной задаче нахождения всех чисел z, которые могут быть гипотенузами простейших треугольников Пифагора. Такое число z должно быть представимо в виде z = m2 + n2, где числа m и n удовлетворяют условиям (5.2.8). Необходимым и достаточным условием для этого является следующее: каждый из простых множителей числа z должен иметь вид 4n + 1. Доказательство этого утверждения мы вновь опускаем.

Примеры. z = 41. Это число легко представить в виде суммы двух квадратов искомого вида, z = 52 + 42, так что m = 5, n = 4 и x = 40, у = 9, z = 41 выражают длины сторон соответствующего треугольника.

z = 1105 = 5 • 13 • 17. Существуют четыре представления этого числа в виде суммы двух квадратов:

1105 = ЗЗ2 + 42 = 322 + 92 = 312 + 122 = 242 + 232.

Стороны соответствующих треугольников вычислите самостоятельно.

Целый ряд задач о треугольниках Пифагора может быть решен при помощи наших формул (5.2.7)

х = 2mn, у = m2 — n2, z = m2 + n2.

Например, можно искать треугольники Пифагора с заданной площадью А. Если такой треугольник является простейшим, то его площадь равна

А = 1/2 ху = mn (m — n) (+ n). (5.3.8)

Здесь три из четырех множителей нечетны. Нетрудно видеть, что они попарно взаимно простые. Поэтому, чтобы найти все возможные значения чисел m и n, можно выделить из числа А два взаимно простых нечетных множителя k и k (k > l), положив

m + n = k, m — n = l,

что дает

m = 1/2 (k + l), n = 1/2 (k — l).

После этого мы проверяем, удовлетворяют ли эти числа условиям (5.3.8).

Рассуждения несколько упрощаются, если заметить, что два множителя в выражении (5.3.8) могут равняться 1 только в единственном случае:

m = 2, n = 1, A = 6.

Действительно, два множителя в (5.3.8) могут быть равны 1, только если

n = m — n = 1,

что и дает указанное выше значение.

Пример. Найдем все треугольники Пифагора с площадью А = 360. Разложение числа А на простые множители таково: A = 23  32 • 5. Число А может быть единственным образом записано в виде произведения четырех взаимно простых множителей: А = 8 • 1 • 5 • 9. Если мы ищем простейший треугольник, то mn = 9. Однако если m = 8, то n = 1 и m — n = 7, но А не делится на 7, а вторая возможность (n = 8, m = 1) исключается условием > n. Поэтому такого треугольника не существует.

Этот результат не исключает возможности существования треугольников с площадью А = 360, не являющихся простейшими. Следующее соображение может быть использовано в общем случае для нахождения треугольников заданной площади, не являющихся простейшими. Если длины всех сторон треугольника имеют общий делитель d, т. е. могут быть записаны как

dx, dy, dz,

то его площадь равна

А = 1/2 dx dy = d2mn (m — n) (m + n).

Таким образом, число d2 является множителем числа А и, если число d есть наибольший общий делитель длин сторон, то число

А0 = A/d2 = mn (m — n) (m + n)

должно быть площадью простейшего треугольника.

Применим полученный результат к только что рассмотренному случаю А = 360. У этого числа существуют три множителя, являющиеся квадратами;

d1 = 4, d2 = 9, d3 = 36.

Соответственно находим

A/d1 =90 = 2 • 32 • 5, A/d2 = 40 = 23 • 5, A/d3 = 10 = 2 • 5.

Не существует способов написать число 40 или 10 в виде произведения четырех взаимно простых множителей, а число 90 может быть представлено в таком виде, причем единственным образом, а именно:

90 = 1 • 2 • З2 • 5.

(В числе сомножителей 1 может встречаться не более одного раза, за исключением случая m = 2, n = 1, А = 6.) Так как наибольшим множителем является 9, то мы должны взять mn = 9. Однако, перебирая все возможные значения m = 1, 2, 5, получим соответственно n = 8, 7, 4. Условие mn исключает все случаи, кроме m = 5, n = 4, для которого, однако, mn (m + n) (m — n) ≠ 90. Итак, мы получили, что не существует ни простейшего, ни иного треугольника Пифагора с площадью А = 360.

Можно было бы затронуть еще много других вопросов, но упомянем лишь об одном из них. Периметр треугольника равен

c = x + y + z; (5.3.9)

для простейшего треугольника Пифагора получаем

с = 2mn + (т2 — n2) + (m2 + n2) = 2n (m + n).

Мы предоставляем читателю самому отыскать метод нахождения всех треугольников Пифагора с заданным периметром. Не пренебрегайте рассмотрением

числовых примеров.

Мы решили задачу построения всех треугольников Пифагора. Это ведет нас к исследованию более общих связанных с ней задач. Естественным обобщением задачи Пифагора является задача Герона, названная по имени древнегреческого математика Герона, жившего в Александрии: найти все треугольники с целочисленными сторонами, площади которых также выражаются целыми числами. Эта задача отличается от задачи Пифагора тем, что условие наличия прямого угла заменено требованием целочисленности площади. Очевидно, что всякий треугольник Пифагора удовлетворяет условиям задачи Герона.

Для проверки того, является ли данный треугольник треугольником Герона, проще всего применить формулу Герона для площади треугольника,



где с — это периметр треугольника, определенный в (5.3.9). Хотя известно значительное число треугольников Герона, не существует общей формулы, описывающей все эти треугольники. Приведем несколько из них (не прямоугольных):

x = 7 y = 15 z = 20

    9     10     17

   13     14     15

   39     41     50

Мы не можем закончить рассказ о треугольниках Пифагора, не упомянув об одной из самых знаменитых проблем математики, гипотезе П. Ферма:

для n > 2 не существует натуральных чисел x, у, z таких, что

хn + уnzn.

Эта идея пришла к Ферма в то время, когда он изучал перевод с греческого «Арифметики» Диофанта. В этой книге в основном рассматриваются задачи, в решении которых применяются формулы для нахождения треугольников Пифагора. Читая эту книгу, Ферма делал пометки на нолях.

Ферма был взволнован своим «открытием», он верил, что у него есть удивительное доказательство, и сожалел, что не может его записать, так как поля слишком узки. С тех пор эта задача занимает математиков. Для нахождения доказательства изобретались самые искусные методы; этот поиск привел к открытию новых фундаментальных теорий в математике. Используя теоретические разработки и вычисления на ЭВМ, было показано, что теорема Ферма справедлива для многих значений степени n. В настоящее время мы знаем, что этот результат выполняется для всех значений n, удовлетворяющих неравенству 3 ≤ n ≤ 4002.


О. ОРЕ читать все книги автора по порядку

О. ОРЕ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Приглашение в теорию чисел отзывы

Отзывы читателей о книге Приглашение в теорию чисел, автор: О. ОРЕ. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.