My-library.info
Все категории

Теория относительности и сверхсветовая скорость (издание второе) - Владимир Иванович Моренко

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Теория относительности и сверхсветовая скорость (издание второе) - Владимир Иванович Моренко. Жанр: Прочая научная литература год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Теория относительности и сверхсветовая скорость (издание второе)
Дата добавления:
5 январь 2024
Количество просмотров:
29
Читать онлайн
Теория относительности и сверхсветовая скорость (издание второе) - Владимир Иванович Моренко

Теория относительности и сверхсветовая скорость (издание второе) - Владимир Иванович Моренко краткое содержание

Теория относительности и сверхсветовая скорость (издание второе) - Владимир Иванович Моренко - описание и краткое содержание, автор Владимир Иванович Моренко, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

В книге изложены результаты анализа соответствия принципа лоренц-ковариантности физических теорий основным положениям математической физики. Показано несоответствие данного принципа определению функции Лагранжа и предложены способы разрешения данного противоречия. Дано объяснение микроволнового излучения и изотропного рентгеновского фона на основе их общей природы. Предложено объяснение структуры и свойств черных дыр. Отмечены особенности квантовой механики, препятствующие ее совместимости с теорией относительности.

Теория относительности и сверхсветовая скорость (издание второе) читать онлайн бесплатно

Теория относительности и сверхсветовая скорость (издание второе) - читать книгу онлайн бесплатно, автор Владимир Иванович Моренко
дырками), этот ноль располагается на поверхности сферы с радиусом , который можно определить как радиус вырождения вакуума и вычет в плоском пространстве. То есть мы имеем дело с «плавающим нулем». Такое свойство позволяет ограничить область действия известных законов гравитации, как описание взаимодействия поля и вещества, с помощью параметра «показателя преломления (сгущения) вакуума»:

Здесь r – расстояние, измеряемое от центра стандартной евклидовой системы координат, то есть истинно пространственное расстояние. А – расстояние в полевой системе координат, центр которой расположен на сфере с радиусом . Возможны и иные формы записи данного показателя, например, по идее исключенного объема . Но для простоты будем в дальнейшем рассматривать первоначально указанную форму записи показателя преломления вакуума.

Таким образом, не изменяя свойств собственно пространства (оно остается плоским), мы вводим систему координат, которая тождественна искривленному гравитацией пространству. Подчеркнем, что такой принцип позволяет совместить физические и математические основания, необходимые для корректного описания движения тел в пространстве, состоящем из двух принципиально различных типов пространств. При этом эффект существования показателя преломления вакуума можно отнести на величину скорости света, положив , считая, что в гравитационном поле скорость света определяется произведением показателя преломления вакуума и скорости света в вакууме на бесконечном удалении от источника гравитационного поля. Данное предположение нельзя считать совсем уж беспочвенным, поскольку академиком Басовым с сотрудниками еще в 1965 году было официально объявлено об экспериментальном обнаружении факта, что величина скорости света в «инверсно заселенной среде» отличается от скорости света в вакууме в сторону ее увеличения. Конечно, опыт Басова свидетельствует о влиянии интенсивности электрического и магнитного полей на свойства физического вакуума, а не о влиянии гравитационного поля на свойства этого вакуума. Но кто гарантирует, что тяготение никак не сказывается на величинах электрической и магнитной проницаемости разреженной среды? Очень жалко, что в ходе данного эксперимента не было определено, каким именно образом изменяются частота и длина волны мощного импульса, имеющего скорость, превышающую скорость света в вакууме. Но именно «инверсная заселенность» среды, в которой распространяется луч лазера, позволяет использовать понятие об особом показателе преломления свободной от имеющих ненулевую массу покоя частиц среды, то есть одной из форм существования физического вакуума. Отметим, что в оптике принято иное правило определения изменения скорости света при переходе границы между двумя оптически прозрачными средами. Но ради удобства, если заранее не оговорено иное, будем использовать не дробные, меньшие единицы значения показателя преломления, а их обратную величину, оставляя все правила по использованию в оптике понятия о показателе преломления неизменными.

Примечательно, что на основе гипотезы о показателе преломления вакуума можно прийти к модели искривленного пространства, чтобы использовать хорошо развитый аппарат общей теории относительности. Для этого, прежде всего, следует эйнштейновский интервал между событиями записать с учетом уточненного определения времени собственного и зависимости65 скорости света от показателя преломления вакуума через выражение:

Поскольку речь идет о сравнении бесконечно малых перемещений в одном и том же месте, то:

Если описывается процесс на движущемся теле, находящемся достаточно далеко от критической точки , то:

Подчеркнем, что время собственное является инвариантной величиной для сравниваемых систем координат только в том случае, если можно пренебречь различиями в оценке значений показателя преломления вакуума наблюдателями из разных систем координат.

Тогда выражение для времени собственного можно записать в виде:

Множитель можно внести в тензор и отнести тем самым все эффекты, связанные с изменением скорости света в зависимости от показателя преломления вакуума, на изменения пространственных координат (искривление пространства) в присутствии гравитационных масс. И теперь можно перейти к модели с искривленным пространством, используя выражения, основанные на применении метрического тензора общей теории относительности.

По определению метрический тензор:

Учитывая, что вещество во Вселенной всегда находится в состоянии свободного падения, а показатель преломления вакуума является функцией от времени, удобнее перейти к величине, обратной показателю преломления вакуума .

В этом случае:

При таком определении становится очевидным выражение для времени собственного, основанное именно на принципе искривления пространства:

Обратим внимание, что использование в определении тензора (в виде ) является необходимым условием для применения соотношения времен в различных системах координат, полученного в специальной теории относительности. Тем самым можно реализовать принцип эквивалентности Эйнштейна о равноправии состояний покоя (инерциального движения) и невесомости при свободном падении.

В реальности же мы должны учитывать не только тот факт, что в природе нет абсолютно неподвижных объектов, но и то, что для определения времени собственного на наблюдаемом объекте мы вынуждены использовать часы удаленного лабораторного наблюдателя. И в этом случае скорость света будет определяться тем показателем преломления вакуума, который существует в точке расположения этого наблюдателя. К тому же, если речь идет о свободном падении наблюдаемого тела, то возникает дополнительная техническая проблема, так как необходимо искать общее для наблюдателя и указанного тела гравитационное поле. В ином случае движение наблюдаемого тела не может быть признано свободным падением.

Возвратившись к плоскому пространству и переменной скорости света, рассмотрим общеизвестные явления с учетом этих обстоятельств.

Для случая вращения Меркурия вокруг Солнца можно заметить, что мгновенные угловые скорости различны в стандартной и полевой системах координат, а их соотношение определяется зависимостью:

Здесь знаком штрих обозначен угол поворота в полевой системе координат.

Используя свойства эллипса легко найти выражение:

Здесь a и – параметры эллипса.

Подстановка в предыдущее выражение и его интегрирование дают:

За один оборот вокруг Солнца угол между прямыми, проходящими через ноли стандартной и полевой систем координат соответственно и точку перигелия Меркурия, составит:

Это выражение с учетом результата ([5], с.213), полученного в ходе астрономических наблюдений за Меркурием , позволяет определить радиус вырождения в виде:

Отклонение луча света вблизи гравитационных масс также можно объяснить движением фотона в среде с переменным показателем преломления. Но, чтобы не нарушать законы классической оптики, будем использовать определение показателя преломления в виде:

.

Переходу через границу между двумя оптически прозрачными средами в классической оптике соответствует выражение:

Поскольку фотон перемещается в среде с переменным показателем преломления вакуума, то:

А, так как в данных конкретных условиях , то:

Отклонение луча света Солнцем осуществляется как на пути от источника излучения до солнечного диска , так и после него, вплоть до наблюдателя:

Первое слагаемое определяется из выражения:

, так как .

Следовательно:

Второе слагаемое, учитывая, что расстояние от Земли до Солнца , будет:

Тогда отклонение луча света вблизи солнечного диска будет равно:

,

с

=1.

Полученное выражение в полтора раза превышает предсказание общей теории


Владимир Иванович Моренко читать все книги автора по порядку

Владимир Иванович Моренко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Теория относительности и сверхсветовая скорость (издание второе) отзывы

Отзывы читателей о книге Теория относительности и сверхсветовая скорость (издание второе), автор: Владимир Иванович Моренко. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.