3 балла
Всего – 20 баллов
Сюжетная линия эпизода «Мардж и Гомер спасают чужой брак» (Marge and Homer Turn a Couple Play, сезон 17, эпизод 22; 2006 год) разворачивается вокруг звезды бейсбола по имени Бак Митчелл («Король хоум-рана»), который играет за бейсбольную команду Спрингфилда Isotopes. Когда у них с женой Табитой Викс возникают супружеские проблемы, результативность Митчела на поле начинает падать, поэтому они обращаются к Гомеру и Мардж за советом как к семейным консультантам. После множества неожиданных поворотов действие достигает кульминации на спрингфилдском стадионе, где Табита появляется на экране Jumbo-Vision и прилюдно признается Баку в любви.
Несмотря на то что в этом эпизоде звучит голос Мэнди Мур, есть отсылка к Джерому Дэвиду Сэлинджеру и «Пьете» Микеланджело, зрителей из числа математиков больше всего взволновало появление особого простого числа. Прежде чем рассказывать о нем более подробно, давайте немного отклонимся от темы и познакомимся с двумя математиками, которые натолкнули сценаристов на мысль об отсылке к этому числу. Речь идет о профессоре Аппалачского университета Саре Гринволд и профессоре из Колледжа Санта-Моники Эндрю Нестлере.
Гринволд и Нестлер заинтересовались мультсериалом «Симпсоны» в 1991 году, когда впервые встретились и подружились во время учебы на математическом факультете Пенсильванского университета. Оба как раз начинали работать над докторскими диссертациями и раз в неделю собирались со студентами магистратуры, чтобы посмотреть «Симпсонов» и вместе поужинать. Нестлер хорошо помнит, почему этот сериал им так нравился: «Сценаристы создали двух нердов: профессора Фринка, ученого, и Мартина Принса, одаренного ученика начальной школы. Кроме них была еще главная героиня – Лиза Симпсон, тоже очень умная и любознательная. Наличие этих персонажей придало сериалу нечто такое, из-за чего интеллектуалам хотелось его смотреть, чтобы в каком-то смысле посмеяться над собой».
Спустя некоторое время Гринволд и Нестлер начали собирать различные математические ссылки в «Симпсонах». Помимо шуток про высшую математику, их внимание также привлекли сцены с математикой в контексте обучения. Нестлер вспоминает, что пришел в восторг от фразы Эдны Крабаппл в эпизоде «Малыш Вигги» (This Little Wiggy, сезон 9, эпизод 18; 1998 год), когда самая суровая учительница Спрингфилда поворачивается к классу и говорит: «Чья машинка сосчитает, сколько будет семь на восемь?»
Через какое-то время Гринволд и Нестлер нашли так много математических шуток, что Нестлер решил создать базу данных со сценами, которые могут заинтересовать математиков. По словам Нестлера, для него это было очевидно: «Я по своей природе коллекционер и люблю все каталогизировать. В молодости я собирал визитки. Мое главное хобби – коллекционирование записей Мадонны; в моей коллекции их уже более 2300».
После того как Гринволд и Нестлер получили докторские степени и занялись преподавательской деятельностью, они стали включать сцены из «Симпсонов» в лекции. Нестлер, докторская диссертация которого была посвящена алгебраической теории чисел, использовал материал из мультсериала в своих курсах, охватывающих такие темы, как матанализ, введение в матанализ, линейная алгебра и дискретная математика.
Научные интересы Гринволд, напротив, фокусировались на сферических многообразиях (специальной области геометрии), поэтому она чаще включала геометрические шутки из «Симпсонов» в свой курс под названием «Математика 1010 (Гуманитарная математика)». Например, обсуждала на лекциях начальную сцену на диване (вступительные кадры каждого эпизода заканчиваются такой сценой, причем в ней всегда присутствует какой-то визуальный элемент юмора) из эпизода «Великий Гомер» (Homer the Great, сезон 6, эпизод 12; 1995 год). В ней Гомер и его семья перемещаются по парадоксальной системе лестниц под воздействием трех сил тяжести, каждая из которых перпендикулярна остальным. Эта сцена представляет собой ссылку на «Относительность», знаменитую литографию голландского художника Маурица Корнелиса Эшера, страстно увлеченного математикой вообще и геометрией в частности.
Необычный подход к преподаванию Гринволд и Нестлера, несколько лет подряд использующих сцены из «Симпсонов» в своих курсах, привлек внимание ряда местных СМИ, что вылилось в интервью в программе Национального общественного радио Science Friday («Научная пятница»). Когда сценаристы «Симпсонов» услышали его, они были поражены тем, что их внутренние нердовские шутки упоминаются теперь даже в университетских курсах по математике, и захотели встретиться с этими профессорами и поблагодарить их за увлеченность как математикой, так и «Симпсонами». В итоге Гринволд и Нестлера пригласили на вычитку очередного эпизода, которым как раз и оказался эпизод «Мардж и Гомер спасают чужой брак».
Двадцать пятого августа 2001 года Гринволд и Нестлер слушали вычитку сценария о беспорядочных отношениях между Баком Митчелом и Табитой Викс. Профессора сидели и наслаждались историей, а сценаристы внимательно анализировали каждую строчку, выискивая хорошие шутки, которые можно было бы улучшить, и плохие, которые следовало выбросить. Немного позже в тот же день, после отъезда профессоров, авторы сравнили свои записи и начали предлагать поправки к сценарию. Все согласились с тем, что это сильный эпизод, но в нем есть одно вопиющее упущение – полное отсутствие даже намека на математику!
Казалось невежливым пригласить Гринволда и Нестлер на вычитку сценария из-за их интереса к математике в «Симпсонах», и при этом представить им эпизод, в котором математики не было. Авторы приступили к повторному анализу сценария, сцена за сценой, в поисках подходящего места для вставки математики. В конце концов один из них заметил, что кульминация эпизода позволяет включить ряд интересных цифр.
Перед тем как Табита во всеуслышание признается в любви к Баку на экране Jumbo-Vision, на нем отображается вопрос с несколькими вариантами ответа, предлагающий зрителям догадаться, сколько людей присутствует на стадионе. В предварительном сценарии числа в них были взяты наугад, однако теперь сценаристы решили заменить их числами с особенно интересными свойствами. Когда они справились с задачей, Джефф Уэстбрук написал Саре Гринволд электронное письмо, в котором было сказано следующее: «Просто замечательно, что вы у нас побывали, поскольку это слегка подстегнуло нас, и мы решили включить в эпизод несколько более интересных математических чисел в честь вашего визита».
Изображение на экране Jumbo-Vision из эпизода «Мардж и Гомер спасают чужой брак»
Три особых числа, появившиеся на экране Jumbo-Vision, случайному зрителю показались бы произвольно выбранными и ничем не примечательными, но зрители с математическим складом ума сразу бы поняли, что каждое из них замечательно по-своему.
Первое число 8191 – простое число. В действительности оно относится к особому классу простых чисел, известному как числа Мерсенна. Этот класс назван в честь Марена Мерсенна, который в 1611 году стал членом ордена минимов в Париже и с тех пор делил свое время между молитвами Богу и поклонением математике. Мерсенн проявлял особый интерес к набору чисел вида 2p − 1, где p – любое простое число. В приведенной ниже таблице показано, что произойдет, если подставить все простые числа меньше 20 в формулу 2p −1.
Поразительное свойство этой таблицы состоит в том, что формула 2p − 1, похоже, генерирует числа, которые могут быть простыми. На самом деле все числа в правом столбце простые, за исключением числа 2047, поскольку 2047 = 23 × 89. Другими словами, формула 2p − 1 – это рецепт, использующий в качестве ингредиентов простые числа для образования новых простых чисел. Например, если p = 13, тогда 2¹³ − 1 = 8191, а это и есть простое число Мерсенна, присутствующее в эпизоде «Мардж и Гомер спасают чужой брак».
Числа Мерсенна считаются звездами в мире чисел, так как могут быть очень большими. Некоторые из них относятся к категории титанических простых чисел (имеют более тысячи знаков), некоторые – гигантских простых чисел (более десяти тысяч знаков), а самые большие называют мегапростыми числами (более одного миллиона знаков). Десять наиболее больших известных простых чисел Мерсенна – это самые большие простые числа из когда-либо найденных. Самое большое число Мерсенна (257885161 − 1), которое было открыто в январе 2013 года, имеет свыше семнадцати миллионов знаков[33].