My-library.info
Все категории

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Почему Е=mc²? И почему это должно нас волновать
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
118
Читать онлайн
Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать краткое содержание

Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать - описание и краткое содержание, автор Брайан Кокс, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.Книга будет полезна всем, кто интересуется устройством мира.

Почему Е=mc²? И почему это должно нас волновать читать онлайн бесплатно

Почему Е=mc²? И почему это должно нас волновать - читать книгу онлайн бесплатно, автор Брайан Кокс

Хорошим примером может послужить длина куска веревки. Исходя из того, что нам уже известно, можно прийти к выводу, что хотя кусок веревки – это реальный объект, нам следует избегать написания уравнения, отображающего только его длину в пространстве. Пожалуй, нам нужно быть смелее и говорить о длине куска веревки в пространстве-времени, как того требует теория пространственно-временного континуума. Безусловно, физикам, решающим сугубо земные задачи, удобно использовать уравнения, отображающие взаимоотношения между длинами в пространстве и другими вещами подобного рода (инженеры считают такой подход весьма полезным). Уравнение, в котором используется только длина в пространстве или время, измеряемое с помощью часов, вполне корректно рассматривать как допустимое приближение, если речь идет об объектах, движущихся очень медленно по сравнению с предельной космической скоростью, что во многих случаях (хотя и не всегда) верно в контексте решения повседневных инженерных задач. Пример, доказывающий, что это не всегда так, – ускоритель частиц, в котором субатомные частицы движутся по кругу со скоростью, близкой к скорости света, и в результате живут дольше своих покоящихся двойников. Если бы следствия теории Эйнштейна не принимались во внимание, ускорители частиц просто не работали бы должным образом. Фундаментальная физика сводится к поиску фундаментальных уравнений, а это подразумевает необходимость работать исключительно с математическими представлениями объектов, имеющими универсальное значение в пространственно-временном континууме. Прежнее представление о пространстве и времени как о двух отдельных концепциях приводит к формированию картины мира, напоминающей попытку смотреть спектакль, наблюдая только за тенями, оставленными на сцене светом прожекторов. На самом деле в спектакле играют трехмерные актеры, которые передвигаются по сцене, а тени – всего лишь двумерная проекция спектакля. После открытия концепции пространства-времени мы наконец можем оторвать взгляд от этих теней.

Все эти разговоры об объектах в пространстве-времени могут показаться достаточно абстрактными, но в них есть свой смысл. До сих пор мы сталкивались только с одной математической моделью объекта, имеющей универсальное значение в пространстве-времени, – расстоянием между двумя событиями в пространстве-времени. Но есть и другие.

Прежде чем разбираться с объектом нового типа, расположенным в пространстве-времени, давайте вернемся на один шаг и представим себе его аналог в трех измерениях, соответствующих нашему повседневному опыту. С учетом уже прочитанного в этой книге для вас не должен стать неожиданностью тот факт, что любая разумная попытка описать окружающий мир использует концепцию расстояния между двумя точками. Так вот, расстояние – это особый объект, который характеризуется одним числом. Например, расстояние от Манчестера до Лондона – 296 километров, а от вашей ступни до макушки головы (которое принято называть ростом) – примерно 176 сантиметров. Слово, указываемое после числа (сантиметры или километры), просто объясняет, в каких единицах ведется измерение, но в обоих случаях речь идет об одном числе. Расстояние от Манчестера до Лондона – безусловно, полезная информация, которой достаточно для определения требуемого количества бензина, но не совсем достаточно для того, чтобы совершить саму поездку. Без карты мы вполне можем отправиться не в том направлении и оказаться в Норидже.

Несколько сюрреалистичным и совершенно непрактичным решением этой проблемы могло бы стать сооружение гигантской стрелы длиной 296 километров; ее конец можно было бы расположить в Манчестере, а наконечник – в Лондоне. Стрелка – весьма полезный инструмент, часто используемый физиками для описания мира, поскольку она отображает идею о том, что нечто может иметь одновременно и размер, и направление. Очевидно, что существование гигантской стрелы от Манчестера до Лондона имеет смысл, только если она повернута в определенном направлении. В противном случае мы все так же могли бы оказаться в Норидже. Именно это мы и подразумеваем, утверждая, что стрела имеет как размер, так и направление. Стрелки помогают нам описывать окружающий мир. Пример тому – стрелки, которые используют синоптики для иллюстрации направления и скорости ветра: чем больше стрелка, тем сильнее ветер. Скорость ветра, отображаемая на синоптической карте, а также гигантская стрела от Манчестера до Лондона – это двумерные векторы, для описания которых необходимы только два числа. Например, мы можем сказать, что ветер дует со скоростью 65 километров в час в юго-восточном направлении. Показывая нам стрелки только в двух измерениях, синоптики не дают полной картины происходящего – они не сообщают, дует ли ветер вверх или вниз и на сколько градусов, но в большинстве случаев это не так важно.

Векторы также могут существовать в трех или более измерениях. Если бы мы начали свой путь из Манчестера в Лондон в одной из старых деревень в Пеннинских горах к северу от Манчестера, нам пришлось бы направить нашу стрелу немного вниз, поскольку Лондон расположен на берегах Темзы, на уровне моря. Векторы, существующие в трех измерениях обычного пространства, можно описать тремя числами. К настоящему моменту вы, наверное, уже догадались, что векторы могут находиться и в пространстве-времени и их следует описывать четырьмя числами.

Мы уже близки к тому, чтобы раскрыть суть двух оставшихся составляющих на пути к пониманию, почему E = mc². Первая составляющая вряд ли вас удивит: нас будут интересовать только векторы, существующие в четырех измерениях пространства-времени. Эту концепцию легко сформулировать, но она весьма своеобразна: подобно тому как вектор может указывать на север, мы теперь имеем понятие вектора, указывающего в направлении времени. Как всегда при обсуждении пространства-времени, нам трудно мысленно представить себе эту концепцию, но это наша проблема, а не окружающего мира. Аналогия с пространственно-временной равниной, использованная нами в предыдущей главе, поможет вам сформировать мысленную картину, по крайней мере упрощенную картину пространства-времени с одним пространственным измерением. Четырехмерные векторы характеризуются четырьмя числами. Базовый вектор – тот, который соединяет две точки в пространстве-времени. Два примера такого вектора показаны на рис. 9. То, что один из векторов на рисунке указывает в направлении времени и что оба вектора исходят из одной точки, сделано исключительно ради нашего удобства. В самом общем виде вы должны представлять себе любые две точки в пространстве-времени вместе с соединяющей их стрелкой. Такие векторы – не полная абстракция. Если вы ложитесь спать в десять часов вечера и просыпаетесь в восемь часов утра, эти два события в пространстве-времени соединяет вектор, длина которого равна десяти часам, умноженным на с, указывающий в направлении времени. Более того, мы уже говорили об этих векторах в нашей книге, но не использовали такую терминологию. Например, мы столкнулись с одним очень важным вектором, когда говорили об отважном мотоциклисте, путешествующем по холмистой равнине пространства-времени с зафиксированным дроссельным клапаном. Мы пришли к выводу, что этот мотоциклист всегда перемещается в пространстве-времени со скоростью с, а также что он может выбирать только направление движения мотоцикла (хотя даже здесь у него нет полной свободы действий, поскольку ему нельзя отклоняться от северного направления более чем на 45 градусов). Мы можем представить движение мотоциклиста с помощью вектора фиксированной длины с, который указывает, в каком направлении он перемещается по пространственно-временному ландшафту. У этого вектора есть имя – вектор скорости в пространстве-времени. Если использовать правильную терминологию, то следует говорить, что этот вектор скорости всегда имеет длину с и может указывать направление только в пределах светового конуса будущего. Световой конус будущего – это причудливое название области, расположенной между двумя очень важными для сохранения причинно-следственных связей линиями, пролегающими под углом 45 градусов. Мы можем полностью описать любой вектор в пространстве-времени, отметив, какая его часть указывает в направлении времени, а какая – в направлении пространства.


Рис. 9


Мы с вами уже знакомы с положением, что, хотя наблюдатели, которые двигаются с разными скоростями относительно друг друга, по-разному оценивают расстояния во времени и пространстве между двумя событиями, эти расстояния должны меняться таким образом, чтобы расстояние в пространстве-времени всегда оставалось неизменным. Исходя из своеобразной геометрии пространства Минковского это означает, что конец вектора может двигаться по гиперболе, расположенной в пределах светового конуса будущего. В частности, если два события – это лечь спать в десять вечера и проснуться в восемь утра, то находящийся в кровати наблюдатель придет к выводу, что вектор скорости в пространстве-времени направлен вверх по временной оси, как показано на рис. 9, а длина этого вектора – просто количество времени, измеренного по его часам и умноженное на c. Некто, пролетающий мимо на высокой скорости, мог бы воспринять спящего в постели как движущийся объект. В таком случае он включил бы в расчеты еще и движение в пространстве, наблюдая за человеком в постели, а это смещает конец вектора с временной оси. Поскольку длина стрелки не может меняться, ее конец должен оставаться на гиперболе. Эту мысль иллюстрирует вторая, наклонная, стрелка на рис. 9. Как видите, часть вектора, указывающая в направлении времени, увеличилась, а это значит, что с точки зрения быстро движущегося наблюдателя между этими двумя событиями проходит больше времени (другими словами, его часы отсчитывают более десяти часов). Это еще один способ представить странный эффект замедления времени.


Брайан Кокс читать все книги автора по порядку

Брайан Кокс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Почему Е=mc²? И почему это должно нас волновать отзывы

Отзывы читателей о книге Почему Е=mc²? И почему это должно нас волновать, автор: Брайан Кокс. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.