My-library.info
Все категории

Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Самая главная молекула. От структуры ДНК к биомедицине XXI века
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
219
Текст:
Ознакомительная версия
Читать онлайн
Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века

Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века краткое содержание

Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века - описание и краткое содержание, автор Максим Франк-Каменецкий, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы, которые, в сущности, оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других, посвященных ДНК.

Самая главная молекула. От структуры ДНК к биомедицине XXI века читать онлайн бесплатно

Самая главная молекула. От структуры ДНК к биомедицине XXI века - читать книгу онлайн бесплатно, автор Максим Франк-Каменецкий
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Итак, в организме заранее имеются лимфоциты, способные узнать практически любой антиген, даже тот, который ни разу до того не попадал в этот организм. Если, скажем, вирус впервые проник в организм, то найдется Т-лимфоцит, рецептор которого узнает белок оболочки вируса. Связывание антигена с рецептором запускает очень длинную цепь событий, в результате чего, во-первых, образуются так называемые Т-киллеры, клетки-убийцы, которые уничтожают зараженные вирусом клетки. Во-вторых, одна из В-клеток, та самая, которая способна производить антитело против узнанного рецептором антигена, начинает размножаться и вырабатывать иммуноглобулины, связывающиеся с вирусными частицами и в конечном счете выводящие их из организма.

Однако, чтобы все это случилось, нужно время. Если нападение происходит внезапно, то, прежде чем сработает иммунная система, вирус успеет наделать много бед, а то и вообще погубить организм. Другое дело, если вирус уже до этого, скажем, в неинфекционной форме, побывал когда-то в этом организме. Будучи однажды включенной, иммунная система многие годы, а иногда и всю жизнь, сохраняет способность в случае повторного появления антигена быстро нарабатывать Т-киллеры и антитела против него. Они не дадут вирусу как следует развернуться.

Основной вопрос, на который очень долго не удавалось получить ответ, состоит в следующем. Что обеспечивает реакцию организма на самые разные антигены? Ведь каждый организм готов к выработке антител в ответ практически на любой чужеродный белок. В то же время иммуноглобулины и рецепторы Т-лимфоцитов очень специфичны – одна молекула, как правило, узнает только вполне определенный антиген и теряет способность узнавать, если в молекулу антигена внести минимальные изменения. Чтобы обеспечить одновременно и огромную специфичность и разнообразие иммунных реакций, организм держит наготове громадный репертуар различных лимфоцитов, способных распознать практически любой антиген. Их в каждом организме многие миллиарды.

Так что же, существует много миллиардов генов, каждый из которых кодирует свой рецептор и свой иммуноглобулин? И откуда они берутся, эти гены? Они есть уже в зиготе, т. е. достались от родителей? Что за дурацкие вопросы! Конечно! Как же может быть иначе, если химическое строение рецепторов и иммуноглобулинов определяется последовательностью ДНК (а чем еще может определяться строение белков?!).

Но постойте, как такое может быть?! Наш геном состоит из 3 млрд нуклеотидов. Так что, если даже весь геном кодирует только аминокислоты и ничего больше, а это точно не так, он может закодировать миллиард аминокислот, но в геноме никак не найдется места закодировать много миллиардов белков-иммуноглобулинов. Тут концы с концами не сходятся на много порядков. Это во-первых. А во-вторых, если гены рецепторов и иммуноглобулинов переходят к нам от наших родителей вместе с генами других белков, то почему внутри нас иммуноглобулины мамы не атакуют белки папы, и наоборот?

Наши родители, как и все люди (за исключением идентичных, или однояйцовых близнецов, получившихся из одной зиготы), иммунологически несовместимы. Иммунная система одного человека атакует белки другого человека. Отсюда столько проблем при пересадке органов (почек, сердца и т. д.). Но факт есть факт. В каждом из нас вырабатываются и белки, унаследованные от папы, и белки, унаследованные от мамы, а вот ничего ужасного не происходит. Страшно подумать, что было бы, если бы у человека вырабатывались антитела к собственным белкам. К счастью, если это и случается, то очень редко. Но парадокс состоит в том, что объяснять надо не то, что такая болезнь бывает, а то, что она не поражает всех нас!

В 1960-х годах те, кто пытался объяснить иммунитет на генетическом уровне, ясно понимали, что само существование иммунной системы явно противоречило молекулярной биологии того времени. Было ясно, что здесь кроется какая-то загадка, разгадка которой может произвести переворот в наших представлениях.

Поэтому, как только появилась возможность выяснить детальное строение генов высших организмов, в первые объекты изучения попали гены иммуноглобулинов. Наибольший вклад в решение проблемы методами генной инженерии внес иммуногенетик японского происхождения Судзуми Тонегава, который был удостоен за эти его работы Нобелевской премии по физиологии и медицине за 1987 год.

Изучая гены иммуноглобулинов в Институте иммунологии в Базеле, Швейцария (с тех пор он уже давно перебрался в Бостон и работает в Массачусетском технологическом институте), Тонегава впервые в 1976 году обнаружил расчлененные гены. Оказалось, что между участками ДНК, на которых записана информация о вариабельной и постоянной частях иммуноглобулинов, есть участок, где не записано никакой белковой последовательности. А в готовой молекуле иммуноглобулина вариабельная и постоянная части образуют единую полиаминокислотную цепь. Эта новость мгновенно облетела весь научный мир, и буквально через несколько месяцев стало ясно, что «лоскутное» устройство – типичная картина для любых генов высших организмов.

Но не успели привыкнуть к этой новости, как Тонегава сообщил уж совсем потрясающую вещь. Он сравнил ДНК, выделенную из лимфоцитов взрослой мыши, с ДНК из мышиного эмбриона. Оказалось, что у эмбриона вариабельная часть гена состоит не из одного, как у лимфоцитов взрослой мыши, а из двух кусков, которые были обозначены J и V. Меньшая часть, J, всегда находится на месте, а более длинная часть, V, отстоит от J так далеко, что Тонегаве даже не удалось определить расстояние до нее вдоль ДНК.

У эмбриона, как и во всех обычных клетках (не лимфоцитах) взрослого организма, гены иммуноглобулинов устроены так, как показано на рис. 21 вверху. Насчитывается около 300 V-генов, четыре J-гена и один С-ген. Скопление V-генов отделено от скопления J-генов большим промежутком. Между J-генами и С-геном также имеется промежуток, но гораздо меньше. Клетки, имеющие устроенную таким образом ДНК, не способны вырабатывать антитела. Поэтому у эмбриона, и даже у новорожденного, собственные антитела отсутствуют – есть только антитела матери, поступившие в его кровь до рождения.

Рис. 21. Перегруппировка генов иммуноглобулинов. Стадия I происходит в процессе созревания лимфоцитов. Стадия II отвечает синтезу иммуноглобулина и рецептора в лимфоцитах

Вскоре после рождения начинает пробуждаться собственная иммунная система – образуются лимфоциты. В каждом лимфоците происходит следующее. Из ДНК вырезается протяженный участок, начинающийся на конце одного из V-генов и оканчивающийся строго в начале одного из J-генов. В результате данный лимфоцит содержит ДНК, имеющую строение, как показано на рис. 21 (средняя строка). Далее со всего получившегося участка, начиная с гена V и кончая геном С, снимается РНКовая копия. Эта РНК подвергается сплайсингу в принципе так же, как это происходит с любыми расчлененными генами у высших. При этом из РНК удаляется всё, кроме реплики с образовавшегося на предыдущей стадии единого гена VJ, а также гена С. Все три реплики образуют единую непрерывную РНКовую цепь (нижняя строка рис. 21), которая считывается рибосомой, давая белковую цепь иммуноглобулина.

Конечно, самое интересное происходит на стадии I, т. е. тогда, когда образуется лимфоцит данного типа. Чем определяется то, какая именно пара генов V и J состыкуется, окажется рядом при вырезании участка ДНК? Это центральный вопрос, так как от этого целиком зависит строение вырабатываемого лимфоцитом иммуноглобулина.

Кардинальный факт состоит в том, что при этом перебираются все (или почти все) комбинации генов V и J. Это – первый шаг к созданию на базе сравнительно скромного набора исходных генов несметного разнообразия иммуноглобулинов. Ведь, если имеется n генов V и m генов J, то различных пар из них может получиться пт. Таким образом, если, как упоминалось выше, п = 300, а т = 4, то число разных антител оказывается около тысячи.

Но этого мало. Молекула иммуноглобулина состоит не из одной, а из четырех полиаминокислотных цепей, двух легких и двух тяжелых (рис. 22). Обе легкие цепи идентичны друг другу, как и обе тяжелые. Но тяжелые и легкие цепи синтезируются совершенно независимо, и для каждой из них происходит вся та перетасовка, о которой говорилось выше. Поэтому цифру тысяча нужно возвести в квадрат. Так получается миллион.

Но и это еще не все. Оказалось, что в какой-то момент включается механизм, природа которого оставалась до недавнего времени загадкой, благодаря которому возникают мутации, причем только в V-генах. Окружающие V-гены участки ДНК не меняются, а в V-генах происходят случайные замены нуклеотидов. Это еще многократно повышает разнообразие иммуноглобулинов.

Ознакомительная версия.


Максим Франк-Каменецкий читать все книги автора по порядку

Максим Франк-Каменецкий - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Самая главная молекула. От структуры ДНК к биомедицине XXI века отзывы

Отзывы читателей о книге Самая главная молекула. От структуры ДНК к биомедицине XXI века, автор: Максим Франк-Каменецкий. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.