Иммунохимики, будучи все-таки химиками, а не биологами, мало озадачивались идеями эволюционного развития. К тому же их мало волновали запутанные проблемы вроде аутоиммунных явлений. Главным предметом внимания иммунохимиков стали антитела. Но тут-то и возникла неувязка: антител оказалось слишком много.
Поначалу иммунологи и не подозревали, что существует такое большое количество инфекционных заболеваний. Следовало предположить, что человеческий организм обладает способностью вырабатывать антитела для всех существующих болезней, подобно тому, как он с самого рождения умеет вырабатывать ферменты, помогающие переварить всевозможные виды пищи.
Теория боковых цепей, предложенная Эрлихом в 1900 году, служит показательным примером теории отбора, предвосхитившей современные идеи иммунных рецепторов (и оказавшей большое влияние на развитие науки в целом). Эрлих полагал, что на поверхности иммунных клеток находятся «боковые цепи» белков, реагирующие на присутствие определенного антигена. Однако по мере накопления экспериментальных данных его идеи утратили свою привлекательность. Стало очевидно, что существует слишком много различных видов антигенов. Более того, выяснилось, что если синтезировать в лаборатории «искусственное» вещество и ввести его в организм животного, то организм будет отличнейшим образом вырабатывать антитела – к веществу, которого вообще нет в природе. Если мы предполагаем, что каждое антитело специфично по отношению к определенному патогену, тогда нужно, чтобы количество разновидностей антител совпадало с количеством разновидностей антигенов, а ведь числу возможных антигенов, похоже, нет предела. Откуда же тогда берутся специфичные антитела?
Если бы такой вопрос поставили всего столетием раньше, прозвучал бы ответ в рамках теории Божественного творения: Господь в неизреченной мудрости своей может снабдить организм в точности таким набором антител всевозможных типов, какой этому организму необходим. Но времена изменились, и подобное объяснение уже не удовлетворяло ученых.
Возникли теории, предполагавшие, что антитело – это на самом деле модифицированная форма антигена. При заражении антиген поглощается организмом, а затем каким-то образом перестраивается, становясь специфичным по отношению к своей исходной форме. Более поздние и более продуманные варианты такого подхода получили название инструкционистских теорий, поскольку они подразумевали, что антиген «инструктирует» антитела, какую форму им принять. Идея состояла в том, что при встрече с антигеном иммунные компоненты реагируют на него соответствующим образом. Иными словами, специфичности у антител вначале никакой нет; она возникает лишь как отклик на инфекцию. Теория матричного копирования (refolding template theory), предложенная Лайнусом Полингом в 1940 году, как раз носит инструкционистский характер. Согласно его модели, антиген, попадая в организм, встречается с молекулой наивного антитела, которая затем как бы обертывается вокруг антигена, перенимая его форму. Затем эта «матрица» перемещается в клетку, вырабатывающую антитела, где форму матрицы можно будет воспроизвести, создавая любое количество специфичных антител того же типа.
Общая идея инструкционистских теорий кажется вполне логичной: она показывает, как возникает специфичность. Какое-то время инструкционистские теории пользовались довольно большой популярностью, однако в конечном счете каждую из них опровергли результаты экспериментальных исследований.
Вопрос разнообразия антител безумно сложен: организм словно бы избегает любых прямых путей создания такого огромного количества разновидностей антител – во всяком случае, таких путей, которые могут представить себе ученые. Проблему решили только в 1949 году, когда Фрэнк Макфарлейн Бёрнет предложил свою клонально-селекционную теорию. В сущности, это типичная селекционистская теория, к тому же дарвинистская до мозга костей. С первого взгляда она кажется неоправданно сложной. Однако эксперименты показали, что сложность у нее как раз достаточная.
В последние несколько дней наша гостиная выглядит весьма своеобразно. Дело в том, что мой старший сын упорно пытается использовать пути для своего бронепоезда Томаса как модель Мельбурнской железной дороги. При этом он старательно сверяется с картой. Как и создатели настоящих железных дорог, он боролся с нехваткой пространства и материалов. Перед ним не вставали проблемы заторов или отказов оборудования, хотя, с другой стороны, компании Metro Trains вряд ли приходилось сражаться с полугодовалым младенцем, постоянно пытающимся оторвать половину линии и съесть ее.
Строить хорошие модели непросто, даже если вы знаете, как эта штука должна в конце концов выглядеть. Создавать научные модели (представляющие тот или иной аспект природы) еще труднее. Ученые вот уже больше века стараются понять, на что похож иммунитет. В 1967 году Нильс Ерне, датский иммунолог, лауреат Нобелевской премии 1984 года, предсказал, что в ближайшие 50 лет все проблемы иммунологии удастся «решить целиком и полностью». Почему он произнес эти слова? Оказался ли он прав?
Датчанин Ерне стал, наряду с Фрэнком Макфарлейном Бёрнетом, Дэвидом Толмеджем, Питером Медаваром, Густавом Носсалем, Джошуа Ледербергом и прочими, одной из главных движущих сил новой эпохи иммунологии – эпохи, которая заняла всю вторую половину XX века и, в общем-то, продолжается по сей день.
Это новое племя исследователей состояло из биологов, и вполне естественно, что по образу мысли они отличались от своих предшественников – иммунологов, больше ориентированных на химию. Химики привыкли мыслить реакциями, структурами, химическими связями. А биологи умеют мыслить популяциями, поколениями, генеалогическими линиями. Они задают вопросы, больше относящиеся к процессам, которые идут в организме, а не к тем, что идут в пробирке. Химическое мышление сыграло важнейшую роль для понимания того, что антитела делают, встречая антиген. Но этого оказалось недостаточно, чтобы понять, как антитела вообще появляются в тех или иных участках организма.
Начиная с послевоенных лет и затем в 1950-е и 1960-е годы хлынул целый поток иммунологических работ, авторы которых начали как-то разбираться во всей этой неразберихе. Исследования во многом опирались на недавно разработанный инструментарий молекулярной биологии и на открытия, которые он позволил сделать. Вся биология тогда переживала замечательный период стремительного прогресса и постоянных открытий. Такие штуки, как гены, вдруг перестали быть теоретическими понятиями, становясь реальными объектами, которые можно выделить, которыми можно манипулировать, которые можно изучать. Работу клеток (работу самой жизни) выясняли в лабораториях. И все это шло на пользу иммунологии. Не забудем, что именно в то время, в 1950–1960-е годы, появились эффективные вакцины против таких заболеваний, как грипп, полиомиелит и корь, спасшие миллионы жизней и избавившие человечество от страха перед этими болезными. Неудивительно, что в 1967 году Ерне проявлял такой оптимизм.
Модели, разработанные в середине прошлого века, до сих пор остаются актуальными: конечно, их модифицируют с учетом новейших открытий (как это всегда бывает в науке), но принципы остаются неизменными. Основные их идеи мы уже обсудили в предыдущих главах: организм создает широкий ряд клеток, вырабатывающих антитела; в ходе эмбрионального развития отсеиваются клетки, специфичные для аутоантигенов; прочие же клетки остаются в организме, циркулируя по нему, пока не появится чужеродный антиген, который и идентифицируется специфичной клеткой, после чего она осуществляет пролиферацию, производя множество идентичных копий самой себя, а эти копии начинают, в свою очередь, вырабатывать антитела.
Бёрнет выдвинул свою клонально-селекционную теорию (КСТ) в 1957 году, основываясь на идеях Ерне и Толмеджа. Именно КСТ заставила Бёрнета предположить, что загадка иммунитета решена: ему казалось, что КСТ объясняет главное, и теперь осталось лишь разобраться в кое-каких деталях.
К примеру, Бёрнет и его коллеги не знали, каким образом организм ухитряется вырабатывать так много разных типов антител. Среди ранних гипотез Бёрнета – своего рода генетический вариант инструкционистских теорий: он полагал, что молекула антигена может прижиматься к генетическому материалу, оставляя свой отпечаток в гене и тем самым предоставляя организму матрицу для производства антител. Сегодня нам известно, что гены действуют совсем не так. Через несколько лет после этого предположения Бёрнета биологи начали постепенно разбираться в работе генов, но проблема никуда не делась: судя по всему, организм производит немыслимое количество разных типов антител, так что генов для их кодирования просто не хватит. На этот счет выдвигались еще кое-какие гипотезы, но лишь в середине 1970-х Сусуму Тонегава сумел убедительно разрешить загадку разнообразия антител.