Ознакомительная версия.
Условие равновесия, например, внутреннего кольца подшипника, нагруженного радиальной нагрузкой Fr и реакциями Pi, где i – номер нагруженного тела качения от 0 до n (рис. 1.5) (отсчитывается от направления нагрузки), со стороны несущих тел качения, имеет вид:
где γ – угловое расстояние между двумя смежными телами качения:
z – число тел качения в подшипнике.
Рис. 1.5. Схема распределения радиальной нагрузки
в радиальном шарикоподшипнике с нулевым зазором
Исследование зависимости между силами F0, F1, F2…Fn с учетом контактных деформаций при условии абсолютной точности размеров тел качения и колец подшипника и отсутствии в нем радиального зазора позволило установить:
Подсчитано, что отношение в знаменателе всегда равно 4,37 для любого числа тел качения больше 11 [5], т.е.
Вводя поправку на радиальный зазор принимают:
Влияние внутреннего радиального зазора подшипника выражается в том, что с его увеличением угол нагруженной зоны уменьшается, а нагрузка на наиболее нагруженное тело качения увеличивается.
Подшипники качения являются универсальным узлом, который используется в различных механизмах и машинах в качестве опор для снижения сил трения.
Особенностью подшипников качения, по сравнению с подшипниками скольжения, являются высокие контактные напряжения, компенсируемые высокой твердостью дорожек и тел качения. Это определяет особые требования к качеству изготовления деталей подшипников. В определенных условиях подшипники качения могут в различной степени удовлетворять требованиям, связанным с назначением механизма или машины, условиями их монтажа и эксплуатации.
Раздел 2
ВХОДНОЙ КОНТРОЛЬ ПОДШИПНИКОВ КАЧЕНИЯ
Срок службы механического оборудования во многом определяется качеством установленных подшипников качения. Снижение качества изготавливаемых подшипников, широкое распространение контрафактной подшипниковой продукции, проведение тендерных закупок подшипников по минимальным ценам, появление восстановленных подшипников на рынке – все это требует организации входного контроля подшипников качения на промышленных предприятиях-потребителях подшипниковой продукции. При этом функции входного контроля не могут ограничиваться анализом документов на продукцию. Требуется комплексный анализ качества поставляемых подшипников. Для этой цели в настоящее время наибольшее распространение получили стенды входного контроля подшипников качения, позволяющие выполнить отбраковку некачественных подшипников до операций сборки подшипниковых узлов. Это дает возможность исключить внеплановые простои механического оборудования и аварийные ситуации, а также увеличить межремонтный период работы оборудования.
Далее обобщены и проклассифицированы методы входного контроля подшипников качения, а также дан анализ технических характеристик и функциональных возможностей стендов входного контроля подшипников, доступных на отечественном рынке.
2.1 Методы входного контроля подшипников
Входной контроль подшипников качения включает следующие методы [6].
1. Визуальный контроль, заключающийся во внешнем осмотре и проверке маркировки подшипников.
Внешний осмотр подшипников качения проводят при освещенности не менее 1000 лк. Не допускаются к сборке и дальнейшему контролю подшипники, имеющие коррозию и ожоги на рабочих и установочных поверхностях и телах качения, трещины, сколы, забоины и другие механические повреждения, чрезмерное провисание сепаратора, деформированный сепаратор, а также сепараторы с дефектной клепкой или сваркой. Например, в результате внешнего осмотра двухрядного роликового подшипника с посадочным диаметром 450 мм зафиксированы раковины на беговых дорожках (рис. 2.1), что послужило основанием для отказа в приемке подшипника.
Рис. 2.1. Раковины на беговой дорожке внешнего кольца
двухрядного роликового подшипника
Продолжение рис. 2.1.
Проверка маркировки заключается в контроле соответствия государственным стандартам и ведомственным нормам клейм (цифр и букв) на кольцах, содержащих в себе условное обозначение типа подшипника, класса точности, товарного знака завода-изготовителя, года изготовления, радиального зазора, а также дополнительных параметров и характеристик.
2. Контроль лёгкости вращения и характера шума подшипников малых и средних размеров осуществляется вращением от руки одного из колец подшипника при неподвижном другом кольце в горизонтальном или вертикальном положении с периодическим проворачиванием кольца, удерживаемого в неподвижном состоянии. Подшипник предварительно необходимо промыть в теплом масле. Исправный подшипник будет вращаться легко – без местных притормаживаний и заеданий, с глухим шипящим шумом. Подшипник, издающий резкий металлический шум или вращающийся с торможением внешнего кольца, следует забраковать.
Также лёгкость вращение подшипников проверяется после их монтажа. Вращение должно быть ровным, с медленной остановкой, без стуков, рывков и заеданий. Рывки указывают на наличие в подшипнике посторонних частиц; резкое торможение – на малый радиальный зазор; стуки – на вмятины и коррозионные раковины на телах и дорожках качения или на большие зазоры в гнездах сепараторов. В нагруженной зоне все тела качения должны вращаться, проскальзывание тел качения относительно дорожек качения указывает на значительный износ подшипника.
3. Контроль габаритных размеров подшипника проводится специальным или универсальным измерительным инструментом (рис. 2.2). Диаметр отверстия внутреннего кольца подшипника измеряется индикаторным нутромером. Наружный диаметр внешнего кольца и ширина обоих колец подшипника измеряется индикаторным микрометром.
Допускаемые отклонения размеров внутреннего и наружного диаметров, ширины колец подшипников приведены в соответствующих стандартах. Диаметры колец измеряются в 2-х местах по ширине колец и в 2…3-х местах по окружности. Габаритные размеры подшипников с диаметром внешнего кольца свыше 200 мм следует измерять после установки подшипников в горизонтальном положении.
Рис. 2.2. Лаборатория контроля геометрических параметров
деталей подшипников качения ООО «АМБ Технолоджис» (Киев, Украина)
Продолжение рис. 2.2.
4. Контроль радиальных зазоров в радиальных (в т.ч. сферических) шариковых и роликовых подшипниках проводится по следующей схеме.
Внутреннее кольцо подшипника закрепляется неподвижно, к внешнему кольцу подшипника подводится измерительный наконечник индикатора перемещения часового типа, закрепленного на штативе. Перемещая внешнее кольцо в направлении измерительного наконечника и обратно, определяют радиальный зазор по крайним отклонениям стрелки. Рекомендуется применять индикатор с ценой деления шкалы 0,002 мм.
Радиальный зазор измеряется в 3-х местах при повороте внешнего кольца подшипника при каждом измерении на 120°. За окончательное значение радиального зазора принимается среднеарифметическое значение трех измерений. Рекомендуемые радиальные зазоры приведены в стандарте ГОСТ 24810—81 [7].
На рис. 2.3 представлено устройство [8], предназначенное для измерения внутреннего радиального зазора подшипников качения в соответствии с методом «А» стандарта ГОСТ 520—2002 [9].
Рис. 2.3. Устройство для измерения радиального зазора
подшипников качения
Устройство содержит стальное основание, на котором закрепляется проверяемый подшипник при помощи фиксирующей втулки (см. рис. 2.3). Радиальный зазор измеряется с помощью индикатора перемещения часового типа, расположенного на подвижном держателе. При измерении наконечник индикатора подводится к наружной поверхности внешнего кольца подшипника. Сдвигая внешнее кольцо в направлении измерительного наконечника индикатора в прямом и обратном направлении, определяют максимальные и минимальные показания. Радиальный зазор определяется как разность между максимальным и минимальным показаниями индикатора. Измерение проводится несколько раз в различных угловых положениях подшипника.
Ознакомительная версия.