My-library.info
Все категории

Александр Проценко - Энергетика сегодня и завтра

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Александр Проценко - Энергетика сегодня и завтра. Жанр: Прочая научная литература издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Энергетика сегодня и завтра
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
30 январь 2019
Количество просмотров:
114
Читать онлайн
Александр Проценко - Энергетика сегодня и завтра

Александр Проценко - Энергетика сегодня и завтра краткое содержание

Александр Проценко - Энергетика сегодня и завтра - описание и краткое содержание, автор Александр Проценко, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Партия и правительство приняли Энергетическую программу СССР. Книга «Энергетика сегодня и завтра» познакомит читателей с современным состоянием энерговооруженности нашего народного хозяйства, с проблемами, которые придется решать добытчикам топливно-энергетического сырья, и с новыми источниками энергии, с которыми мы встретимся в недалеком будущем. Издание рассчитано на самые широкие круги читателей

Энергетика сегодня и завтра читать онлайн бесплатно

Энергетика сегодня и завтра - читать книгу онлайн бесплатно, автор Александр Проценко

Солнечная топка порождает и поддерживает другие виды возобновляемых энергетических ресурсов, например ветра. Если бы направить все ветры в турбины электрогенераторов, то удалось бы сэкономить 40–80 миллиардов тонн условного топлива в год. Ведь мощность ветрового потока в среднем на планете — больше 500 киловатт на квадратный километр площади.

Приливы и потоки в морях и океанах, если их полностью утилизировать, позволили бы сэкономить около 4 миллиардов тонн условного топлива в год. Зато фотосинтез может дать до 200 миллиардов тонн условного топлива. Из них только на долю лесов приходится около 25 миллиардов тонн.

Энергетическая программа не оставляет в стороне все эти нетрадиционные источники энергии. За их счет намечается производить от 20 до 40 миллионов тонн условного топлива. Примерно столько энергии давали в 1970 году все гидростанции страны.

Предлагается по-разному использовать солнечную топку. Поиск пока идет очень широким фронтом. Уже сегодня нередки солнечные коллекторы для подогрева воды, солнечные фотоэлементы на часах, в космосе.

На повестке дня — солнечные орбитальные электростанции и океанские электрогенераторы, эксплуатирующие напор океанских течений пли перепад температур на поверхности и в глубине океана.

Наиболее проработан на сегодняшний день традиционный способ получения электричества из солнечного излучения — через разогрев того или иного рабочего тола (теплоносителя). Ядерные и термоядерные котлы действуют по такому же принципу. Нагретый теплоноситель (например, вода) используется затем в паровом цикле преобразования тепла в электроэнергию: котел — пар турбина — электрогенератор. Солнечная энергия концентрируется зеркалами. Если в фокусе параболического отражателя разместить трубу с теплоносителем, то получится котел, в котором и будет генерироваться пар.

В мире уже работает несколько подобных установок.

Однако стоимость параболических зеркал чересчур высока. Чтобы удешевить солнечную энергетику, предлагается несколько путей. Судя по всему, лучший из них — переход на системы башенного типа. Эту идею еще в предвоенные годы выдвинул в пашей стране инженер Н. Алшщкий. Ныне башенные станции получили мировое признание. Американцы создали в Барстоу экспериментальную установку мощностью в 10 мегаватт.

В Италии у подножия вулкана Этна функционирует «солнечная башня» мощностью в 1 мегаватт.

В СССР недалеко от Керчи сооружена станция мощностью в 5 мегаватт. Вокруг башни концентрическими кругами размещены 1600 зеркал, направляющих солнечные лучи на паровой котел, который венчает 70-метровую башню. Зеркала площадью 25 квадратных метров каждое с помощью автоматики и электроприводов следят за Солнцем и отражают концентрированную солнечную энергию точно на поверхность котла, обеспечивая ее плотность потока в 150 раз большую, чем Солнце на поверхности Земли. В котле при давлении 40 атмосфер генерируется пар с температурой 250 °C, поступающий на паровую турбину. В специальных емкостях-аккумуляторах под давлением содержится горячая вода, накапливающая тепло для работы по ночам и в пасмурную погоду.

Благодаря этим аккумуляторам станция может работать еще три-четыре часа после захода Солнца, а на половинной мощности — около полусуток.

Казалось бы, добывать так энергию просто! На самом деле проблем хватает. Например, как обеспечить автоматическое слежение за Солнцем? Если перед каждым зеркалом поставить оптическую трубу, которая с помощью фотодатчика следила бы за освещенностью, то достаточно какому-либо случайному облаку закрыть солнце, как автоматика выйдет из строя. Нацеливание зеркал на светило требует дополнительных затрат энергии, и конструкторами принято другое решение — не искать Солнце. Ведь траекторию его движения можно задать уравнениями, ввести их в ЭВМ и соответственно поворачивать зеркала. Такой способ слежения за потоком солнечного излучения оказался самым подходящим.

Еще один путь преобразования солнечных фотонов в электроэнергию фотоэлектрический. Немецкий физик Г. Герц открыл в 1887 году, что фотон может выбить электрон из атома металла. Если собрать освободившиеся электроны на какой-то другой металлической поверхности, соединив ее с освещаемым катодом, то по образовавшейся цепи потечет ток. Фотоэмиссионный генератор заработает.

Захватывающие перспективы открываются перед полупроводниковыми генераторами на кремнии. Здесь электрон, получив от фотона энергию порядка одного электрон-вольта, попадает в энергетическую зону проводимости. Большой части фотонов солнечного излучения как раз по силам осуществить подобные переходы электронов кремния. Значит, КПД полупроводникового кремниевого генератора может теоретически достигать почти 100 процентов. К тому же здесь отсутствует тепловая стадия. Однако из-за множества различных причин реальный достигнутый КПД не превышает пока 10–15 процентов.

Фотоэлектрические полупроводниковые элементы применяются сегодня в различной бытовой технике, не требующей больших количеств энергии: для питания электронных часов, микроЭВМ и др. Но уже построены крупные экспериментальные станции мощностью до нескольких тысяч киловатт. Для такой энергетики возводятся заводы по массовому производству фотопанелей. В Японии на одном из заводов выпускают солнечные батареи, представляющие собой ленты нержавеющей стали, на которой последовательно нанесены тонкие пленки аморфного кремния, фтора и водорода. Ширина лент — 0,3 метра. По мнению специалистов, стоимость подобных фотопанелей будет раз в десять меньше по сравнению с солнечными батареями из кристаллического кремния. Фотоэлектрические преобразователи особенно выгодны в удаленных труднодоступных районах.

Как солнечные башни, так и станции с фотоэлектрическими панелями занимают значительные территории.

Скажем, под крупную установку мощностью 5 миллионов киловатт при десятипроцентном КПД солнечных панелей необходимо не менее 400 квадратных километров! Да еще земля нужна под аккумулирующие емкости с горячей водой. Поэтому ныне взгляды конструкторов все чаще обращаются в околоземное пространство, где целесообразно размещать спутниковые солнечные электростанции (ССЭС).

Проект впечатляет. На геостационарную орбиту выводится грандиозное сооружение. Один только коллектор для собирания и преобразования солнечной энергии имеет площадь около 50 квадратных километров. Мощность станции составит 5 миллионов киловатт, а масса достигнет 20–60 тысяч тонн. Вырабатываемый здесь электрический ток преобразуется в сверхвысокочастотное электромагнитное излучение и с помощью полуторакиломегровой антенны передается на приемную наземную антенну, распростершуюся на площади 15 квадратных километров. В лабораторных условиях удается подобным способом передавать до 50–60 процентов вырабатываемой энергии. Экономичность ССЭС подсчитывается специалистами весьма приближенно. По-видимому, стоимость электроэнергии, производимой на орбите, может сравняться с ее стоимостью на земных тепловых электростанциях, если удастся на порядок удешевить солнечные панели и их доставку на орбиту.

Проблемы. Как их решить?

Можно перечислить еще много различных вариантов использования энергии Солнца, но прежде познакомимся с нерешенными проблемами солнечной энергетики.

Несколько лет назад в книге по ядерной энергетике я привел сравнительные данные о вредном влиянии различных источников энергии на человека и окружающую среду. Ведь производство каждого киловатт-часа энергии сопровождается выбросами пыли и вредных газов, которые загрязняют атмосферу, ухудшают самочувствие человека, уменьшают его трудоспособность и сокращает срок жизни. И вот удивительный факт — по оценкам канадского специалиста Инхабера, люди страдают от электростанций с использованием энергии ветра или солнечной энергии в тысячу раз больше, чем от электростанций на газе или ядерной энергии!

Дело в том, что плотность ветровой пли солнечной энергии мала, и для ее выработки нужно разместить на поверхности земли очень много приемных и преобразующих устройств. А для их изготовления необходима масса разнообразных материалов, производство которых на химических, металлургических и прочих заводах приведет к выбросу огромного количества вредных веществ. Значит, в конце концов, выработка электроэнергии на солнечной или ветростанции оказывает вредное влияние на человека?

К сожалению, эти данные были почерпнуты мной не из оригинального научно-исследовательского отчета Инхабера, а из краткого сообщения в американском журнале «Энергия». Но вот один из моих товарищей по институту привез с международной конференции по энергетике многостраничный отчет под названием «Риск, связанный с возобновляемыми источниками энергии». А ниже подзаголовок: «Критика отчета Инхабера». Это было совместное исследование специалистов университета в Беркли и института по исследованию ресурсов в Гонолулу.


Александр Проценко читать все книги автора по порядку

Александр Проценко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Энергетика сегодня и завтра отзывы

Отзывы читателей о книге Энергетика сегодня и завтра, автор: Александр Проценко. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.