My-library.info
Все категории

Уолтер Левин - Глазами физика. От края радуги к границе времени

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Уолтер Левин - Глазами физика. От края радуги к границе времени. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Глазами физика. От края радуги к границе времени
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
101
Читать онлайн
Уолтер Левин - Глазами физика. От края радуги к границе времени

Уолтер Левин - Глазами физика. От края радуги к границе времени краткое содержание

Уолтер Левин - Глазами физика. От края радуги к границе времени - описание и краткое содержание, автор Уолтер Левин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В книге не менее яркой, чем его знаменитые лекции, профессор Левин рассказывает о самых необычных и интересных гранях физики, о чудесах, которые творятся каждый день вокруг нас, – например, о том, почему ударяет молния. О чем бы ни решил рассказать автор, ему всегда удается совместить обучение с развлечением.Книга предназначена для студентов и преподавателей, а также для всех, кто хочет изучать физику с удовольствием и интересом.На русском языке публикуется впервые.

Глазами физика. От края радуги к границе времени читать онлайн бесплатно

Глазами физика. От края радуги к границе времени - читать книгу онлайн бесплатно, автор Уолтер Левин

Чтобы мы могли услышать один-единственный долгий, красивый, пронзительный звук скрипки, должно произойти немало физических процессов. Звук струны скрипки, виолончели, арфы или гитары – любой струны или даже просто веревки – зависит от трех факторов: длины, силы натяжения и веса. Чем длиннее струна, чем слабее ее натяжение и чем она тяжелее – тем ниже тон. И, конечно же, наоборот: чем короче струна, чем сильнее ее натяжение и чем она легче, тем тон выше. Вот почему музыкантам, играющим на струнных инструментах, время от времени приходится настраивать их, регулируя натяжение струн, чтобы они издавали звуки нужной частоты, или ноты.

Вот тут и начинается магия. Когда скрипач проводит смычком по струне, он передает ей энергию и струна каким-то образом выбирает свои собственные резонансные частоты (из всех возможных колебаний) и – что еще более удивительно, хоть мы и не можем этого видеть – вибрирует одновременно на нескольких разных резонансных частотах (с несколькими гармониками). Совсем не похоже на камертон, который способен вибрировать только на одной частоте.

Эти дополнительные гармоники (с частотами выше основной) обычно называют обертонами. Взаимодействие резонансных частот (одни звучат сильнее, другие слабее) – этакий коктейль из гармоник – и дает скрипке или виолончели то, что специалисты называют техническим термином «тембр» и что воспринимается как уникальный характер звучания инструмента. Именно этим объясняется и очевидная разница между звуком одной-единственной частоты камертона, аудиометра или аварийной сирены и гораздо более сложным звучанием музыкальных инструментов, издающих звук одновременно на нескольких частотах гармоник. Характерные звуки трубы, гобоя, банджо, фортепиано или скрипки обусловлены разными «коктейлями» гармонических частот, которые производит каждый из этих инструментов. Мне лично ужасно нравится образ такого невидимого космического бармена, истинного эксперта в смешивании сотен разных коктейлей из гармоник, который подает звучание банджо одному клиенту, звук литавр – другому, а арфы или тромбона – третьему.

Создатели первых музыкальных инструментов были несомненными гениями в деле разработки их еще одной чрезвычайно важной характеристики, позволяющей нам сегодня наслаждаться прекрасными звуками музыки. Чтобы мы могли слышать музыку, звуковые волны должны не только находиться в пределах диапазона частот, воспринимаемых человеческим ухом, но и быть достаточно громкими. Например, если просто тихонько дернуть струну, звук будет недостаточно громким для того, чтобы его можно было услышать на расстоянии. Конечно, вы можете передать струне (а следовательно, и звуковым волнам, которые она производит) намного больше энергии, дернув за нее гораздо сильнее, но это отнюдь не значит, что у вас получится четкий, качественный и приятный для уха звук. На наше счастье, люди очень давно, как минимум тысячи лет назад, нашли способ сделать так, чтобы струнные инструменты звучали достаточно громко и были слышны на довольно большом расстоянии.

Сегодня вы можете точно воспроизвести проблему, с которой столкнулись тогда наши гениальные предки, и без особого труда решить ее. Возьмите кусок струны длиной сантиметров в тридцать, привяжите один конец к дверной ручке или ящику стола, сильно натяните, держа за другой конец, а потом дерните за нее. Не слишком впечатляющий результат, верно? Вы, конечно, услышите какой-то звук, который может быть вполне различим в зависимости от длины струны, ее толщины и силы натяжения. Но, скорее всего, он будет не слишком сильным. Даже из соседней комнаты его никто не услышит. Теперь возьмите пластиковый стакан, нанижите его на струну, удерживая ее под углом к ручке, к которой она привязана (но так, чтобы стакан не соскользнул к вашей руке), и опять дерните за струну. Вы услышите куда более явный звук. Почему? Потому что струна передает часть своей энергии стакану, который теперь вибрирует с той же частотой, но имеет гораздо большую площадь поверхности, через которую вибрация передается в воздух. В результате вы слышите более громкий звук.

Вот так, с помощью банального пластикового стакана, вы продемонстрировали принцип деки, жизненно важный для всех струнных инструментов, от гитары и контрабаса до скрипки и фортепиано. Эти инструменты, как правило, сделаны из дерева и принимают колебания струн и передают эти частоты в воздух, многократно усиливая их звук.

Деки лучше всего видны в гитарах и скрипках. В рояле дека плоская, горизонтальная и находится под струнами, которые монтируются на ней; она стоит за струнами вертикально. В арфе дека представляет собой основание, к которому крепятся струны.

В аудитории я показываю студентам разные способы функционирования дек. Для одной из таких демонстраций я использую музыкальный инструмент, который смастерила в детском саду моя дочь Эмма. Он состоит из одной самой обычной струны, прикрепленной к картонной коробке из ресторана Kentucky Fried Chicken. Вы можете изменить натяжение струны с помощью деревянного брусочка. Это действительно ужасно забавно: я увеличиваю натяжение, и звук заметно меняется. Коробка KFC – просто идеальная дека, и студенты слышат звук легонько пощипываемой мной струны с довольно большого расстояния. Другая моя любимая демонстрация предполагает использование музыкальной шкатулки, купленной мною много лет назад в Австрии; она размером не больше спичечного коробка, и никакой деки к ней не прикреплено. Вы крутите рукоятку, и шкатулка благодаря вибрирующим зубчикам издает очень тихие мелодичные звуки. Я начинаю крутить рукоятку в аудитории, держа шкатулку в руках, и никто ничего не слышит, даже я сам! Тогда я ставлю шкатулку на лабораторный стол и кручу снова. Теперь звуки слышат все, даже студенты, сидящие в задней части нашего довольно большого лекционного зала. Меня не перестает поражать, насколько эффективной может быть даже самая простая дека.

Но некоторые деки – истинные произведения искусства. Всем известно, что изготовление высококачественных музыкальных инструментов окружено строжайшей секретностью, и в Steinway & Sons вам вряд ли расскажут, как они создают деки для своих всемирно известных роялей! Вы, вероятно, слышали о знаменитой семье Страдивари, изготавливавшей в XVII и XVIII веках самые лучшие в мире скрипки, мечту любого скрипача. Сегодня специалистам известно о существовании всего 540 скрипок Страдивари; один такой инструмент был продан в 2006 году за 3,5 миллиона долларов. В надежде разгадать «секреты Страдивари», чтобы в результате изготавливать дешевые скрипки с таким же волшебным звучанием, физики всесторонне исследовали старинные инструменты. Если интересно, можете прочитать о некоторых таких исследованиях на сайте www.sciencedaily.com/releases/2009/01/090122141228.htm.

То, насколько приятны те или иные комбинации звуков для человеческого уха, во многом зависит от их частот и гармоник. Наиболее известная разновидность комбинации звуков, во всяком случае, в западной музыке, предполагает объединение двух звуков, у которых частота одного ровно в два раза больше частоты другого. Мы говорим, что они разделены одной октавой. Но есть и много других мелодичных комбинаций: терции, кварты, квинты и так далее.

Математики и естествоиспытатели очарованы красотой числовых взаимоотношений между разными частотами еще со времен древнегреческого философа и математика Пифагора. Историки расходятся во мнениях, что именно Пифагор открыл сам, а что позаимствовал у вавилонян и какова в этом роль его последователей, но, судя по всему, именно этому ученому принадлежит идея, что струны разной длины и натяжения производят различные звуки в предсказуемых и приятных уху соотношениях. В связи с этим современным физикам очень нравится называть Пифагора первым автором теории струн.

Производители музыкальных инструментов используют эти ценные знания с огромной эффективностью. Например, разные струны на скрипке имеют разный вес и по-разному натянуты, что позволяет им производить более высокие и более низкие частоты и гармоники, даже если все они примерно одинаковой длины. Скрипач изменяет длину струн, перемещая пальцы вверх и вниз по грифу скрипки. Когда пальцы двигаются по направлению к подбородку, длина струны уменьшается, увеличивая частоту первой гармоники, так же как и всех других, более высоких гармоник. Это может быть довольно сложно. Некоторые струнные инструменты, например индийский ситар, имеют так называемые симпатические струны – дополнительные струны, расположенные рядом или под основными и вибрирующие на собственных резонансных частотах.

Увидеть разные частоты гармоник на струнах музыкального инструмента трудно, а то и невозможно, но я могу наглядно продемонстрировать их, подключив микрофон к осциллографу, который вы, вероятно, видели хотя бы по телевизору. Осциллограф отображает вибрации – или колебания – на экране в виде линии, идущей вверх и вниз, выше и ниже центральной горизонтальной линии. В отделениях интенсивной терапии и реанимациях эти приборы используют для измерения сердцебиения пациентов.


Уолтер Левин читать все книги автора по порядку

Уолтер Левин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Глазами физика. От края радуги к границе времени отзывы

Отзывы читателей о книге Глазами физика. От края радуги к границе времени, автор: Уолтер Левин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.