My-library.info
Все категории

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
211
Текст:
Ознакомительная версия
Читать онлайн
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров читать онлайн бесплатно

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно, автор РАЛЬФ РАЛЬФ ВИНС
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Преобразованные данные будут нормально распределяться, если необработан­ные данные распределялись логарифмически нормально. Если мы рассматриваем распределение изменений цены и оно логарифмически нормальное, то можно ис­пользовать нормальное распределение. Сначала мы должны разделить каждую цену закрытия на предыдущую цену закрытия. Допустим, мы рассматриваем распределе­ние ежемесячных цен закрытия (можно использовать любой временной период: ча­совой, дневной, годовой и т.д.). Предположим, цены закрытия последних пяти меся­цев — 10 долларов, 5 долларов, 10 долларов, 10 долларов и 20 долларов. Это соответ­ствует понижению на 50% во втором месяце, повышению на 100% в третьем месяце, повышению на 0% в четвертом месяце и повышению на 100% в пятом месяце. Соот­ветственно мы получим частные 0,5; 2; 1 и 2 по ежемесячным изменениям цен со второго по пятый месяцы. Это то же, что и HPR нашей последовательности. Теперь мы должны преобразовать их в натуральные логарифмы, чтобы изучить полученное распределение на основе математического аппарата нормального распределения. Таким образом, натуральный логарифм 0,5 равен -0,6931473, ln(2) =0,6931471 и ln(1) = 0. Теперь к распределению этих преобразованных данных мы можем приме­нять математические методы, относящиеся к нормальному распределению.

Параметрическое оптимальное f

Мы немного познакомились с математикой нормального и логарифмически нор­мального распределения и теперь посмотрим, как находить оптимальное f по нормально распределенным результатам. Формула Келли является примером параметрического оптимального f, где f явля­ется функцией двух параметров. В формуле Келли вводные параметры — это про­цент выигрышных ставок и отношение выигрыша к проигрышу. Однако формула Келли даст вам оптимальное f только тогда, когда возможные результаты имеют бернуллиево распределение. Другими словами, формула Келли даст правильное оптимальное f, когда есть только два возможных результата, в противном случае, как, например, в нормально распределенных результатах, формула Келли не даст вам правильное оптимальное f[15].

Параметрические методы гораздо мощнее эмпирических. Рассмотрим си­туацию, которую можно полностью описать бернуллиевым распределением. Мы можем рассчитать оптимальное f либо из формулы Келли, либо с помо­щью эмпирического метода. Допустим, мы выигрываем 60% времени. Предполо­жим, мы бросаем несимметричную монету, и при долгой последовательности 60% бросков будут приходиться на лицевую сторону. Поэтому мы каждый раз ставим на то, что монета будет выпадать на лицевую сторону, и выигрыш составляет 1:1. Из формулы Келли следует, что надо ставить 0,2 нашего счета. Также допустим, что из прошлых 20 бросков 11 выпали лицевой стороной, а 9 обратной. Если бы мы использовали эти 20 сделок в качестве вводных данных для эмпирического метода расчета f, результатом было бы то, что следует рисковать 0,1 нашего счета при каждой следующей ставке. Какое значение правильно, 0,2, полученное параметрическим методом (фор­мула Келли с бернуллиевым распределением), или 0,1, найденное эмпирически на основе 20 последних бросков? Правильным ответом является значение 0,2, найденное с помощью параметрического метода. Причина в том, что каждый последующий бросок имеет 60% вероятность выпасть лицевой стороной, а не 55% вероятность, что следует из результатов 20 последних бросков. Хотя мы рассмат­риваем только 5% отклонение в вероятности, то есть 1 бросок из 20, результаты после применения разных значений f будут сильно отличаться. Вообще парамет­рические методы внутренне более точны, чем эмпирические (при условии, что мы знаем распределение результатов). Это первое преимущество параметричес­кого метода. Самый большой недостаток параметрических методов состоит в том, что мы должны знать, каким распределение результатов будет в течение длитель­ного времени. Второе преимущество состоит в том, что для эмпирического метода требуют­ся исторические данные, в то время как для параметрического в этом нет необхо­димости. Кроме того, эта история должна быть довольно протяженной. В только

что рассмотренном примере можно предположить, что, если бы у нас была исто­рия 50 бросков, мы бы получили эмпирическое оптимальное f ближе к 0,2. При истории 1000 бросков оно было бы еще ближе. Тот факт, что эмпирические методы требуют довольно большого объема исторических данных, свел все их использование к механическим торговым системам. Тот, кто в торговле использует что-либо отличное от механических торговых систем, будь то волны Эллиотта или фундаментальные данные, прак­тически не имеет возможности использовать метод оптимального f. С парамет­рическими методами дело обстоит иначе. Например, тот, кто желает слепо сле­довать какому-нибудь рыночному гуру, имеет теперь возможность использо­вать оптимальное f. В этом состоит третье преимущество параметрического мето­да — он может использоваться любым трейдером на любом рынке. В том случае, когда не используется механическая торговая система, следует помнить о важном допущении. Оно состоит в том, что будущее распределение прибылей и убытков будет напоминать распределение в прошлом (поэтому мы и рассчитываем оптимальное f), это может оказаться менее вероятным, чем в случае использования механической системы.

Все вышесказанное заставляет по-иному взглянуть на ожидаемую работу лю­бого не полностью механического метода. Даже профессионалы («фундамента-листы», последователи Ганна или Эллиотта и т.п.), использующие такие методы, обречены на неудачу, если они находятся далеко справа от пика кривой f. Если они слишком далеко слева от пика, то получат геометрически более низкие при­были, чем их опыт и навыки в этой области позволяют. Более того, практики не полностью механических методов должны понимать, что все сказанное об опти­мальном f и чисто механических методах будет иметь прямое отношение и к их системам. Это надо учитывать при использовании подобных методов. Помните, что проигрыши могут быть значительными, но это не означает, что метод не сле­дует применять.

Четвертое и, возможно, наибольшее преимущество параметрического метода определения оптимального f состоит в том, что параметрический метод позволя­ет создавать модели «что если». Например, вы решили торговать по рыночной системе, которая работала достаточно успешно, но хотите подготовиться к ситуа­ции, когда эта рыночная система прекратит хорошо работать. Параметрические методы позволяют варьировать ваши вводные параметры для отражения возмож­ных изменений, и благодаря этому показать, когда рыночная система прекратит хорошо работать. Еще раз повторюсь: параметрические методы намного мощнее эмпирических.

Зачем вообще использовать эмпирические методы? Они интуитивно более очевидны, чем параметрические. Следовательно, эмпирические методы необ­ходимо изучать до перехода к параметрическим. Мы уже достаточно подробно рассмотрели эмпирический подход и поэтому готовы изучать параметрические методы.


Распределение торговых прибылей и убытков (P&L)

Рассмотрим следующую последовательность 232 торговых прибылей и убытков в пунктах. Не имеет значения, к какому товару или системе относится этот поток данных — это может быть любая система на любом рынке.


№ сделки P&L № сделки P&L № сделки P&L № сделки P&L 1. 0,18 25. 0,15 49. 0,17 73. 0,22 2. -1,11 26. 0,15 50. -1,53 74. 0,92 3. 0,42 27. -1,14 51. 0,15 75. 0,32 4. -0,83 28. 1,12 52. -0,93 76. 0,17 5. 1,42 29. -1,88 53. 0,42 77. 0,57 6. 0,42 30. 0,17 54. 2,77 78. 0,17 7. -0,99 31. 0,57 55. 8,52 79. 1,18 8. 0,87 32. 0,47 56. 2,47 80. 0,17 9. 0,92 33. -1,88 57. -2,08 81. 0,72 10. -0,4 34. 0,17 58. -1,88 82. -3,33 11. -1,48 35. -1,93 59. -1,88 83. -4,13 12. 1,87 36. 0,92 60. 1,67 84. -1,63 13. 1,37 37. 1,45 61. -1,88 85. -1,23 14. -1,48 38. 0,17 62. 3,72 86. 1,62 15. -0,21 39. 1,87 63. 2,87 87. 0,27 16. 1,82 40. 0,52 64. 2,17 88. 1,97 17. 0,15 41. 0,67 65. 1,37 89. -1,72 18. 0,32 42. -1,58 66. 1,62 90. 1,47 19. -1,18 43. -0,5 67. 0,17 91. -1,88 20. -0,43 44. 0,17 68. 0,62 92. 1,72 21. 0,42 45. 0,17 69. 0,92 93. 1,02 22. 0,57 46. -0,65 70. 0,17 94. 0,67 23. 4,72 47. 0,96 71. 1,52 95. 0,67 24. 12,42 48. -0,88 72. -1,78 96. -1,18
Продолжение № сделки P&L № сделки P&L № сделки P&L № сделки P&L 97. 3,22 126. -1,83 155. 0,37 184. 0,57 98. -4,83 127. 0,32 156. 0,87 185. 0,35 99. 8,42 128. 1,62 157. 1,32 186. 1,57 100. -1,58 158. 0,16 187. -1,73 101. -1,88 130. 1,02 159. 0,18 188. -0,83 102. 1,23 131. -0,81 160. 0,52 189. -1,18 103. 1,72 132. -0,74 161. -2,33 190. -0,65 104. 1,12 133. 1,09 162. 1,07 191. -0,78 105. -0,97 134. -1,13 163. 1,32 192. -1,28 106. -1,88 135. 0,52 164. 1,42 193. 0,32 107. -1,88 136. 0,18 165. 2,72 194. 1,24 108. 1,27 137. 0,18 166. 1,37 195. 2,05 109. 0,16 138. 1,47 167. -1,93 196. 0,75 110. 1,22 139. -1,07 168. 2,12 197. 0,17 111. -0,99 140. -0,98 169. 0,62 198. 0,67 112. 1,37 141. 1,07 170. 0,57 199. -0,56 113. 0,18 142. -0,88 171. 0,42 200. -0,98 114. 0,18 143. -0,51 172. 1,58 201. 0,17 115. 2,07 144. 0,57 173. 0,17 202. -0,96 116. 1,47 145. 2,07 174. 0,62 203. 0,35 117. 4,87 146. 0,55 175. 0,77 204. 0,52 118. -1,08 147. 0,42 176. 0,37 205. 0,77 119. 1,27 148. 1,42 177. -1,33 206. 1,10 120. 0,62 149. 0,97 178. -1,18 207. -1,88 121. -1,03 150. 0,62 179. 0,97 208. 0,35 122. 1,82 151. 0,32 180. 0,70 209. 0,92 123. 0,42 152. 0,67 181. 1,64 210. 1,55 124. -2,63 153. 0,77 182. 0,57 211. 1,17 125. -0,73 154. 0,67 183. 0,24 212. 0,67
Продолжение № сделки P&L № сделки P&L № сделки P&L № сделки P&L 213. 0,82 218. 0,25 223. -1,30 228. 1,80 214. -0,98 219. 0,14 224. 0,37 229. 2,12 215. -0,85 220. 0,79 225. -0,51 230. 0,77 216. 0,22 221. -0,55 226. 0,34 231. -1,33 217. -1,08 222. 0,32 227. -1,28 232. 1,52

Если мы хотим определить приведенное параметрическое оптимальное f, нам при­дется преобразовать эти торговые прибыли и убытки в процентные повышения и понижения (основываясь на уравнениях с (2.10а) по (2.10в)). Затем мы преобразуем эти процентные прибыли и убытки, умножив их на текущую цену базового инстру­мента. Например, P&L № 1 составляет 0,18. Допустим, что цена входа в эту сделку была 100,50. Таким образом, процентное повышение по этой сделке будет 0,18/100,50 = 0,001791044776. Теперь предположим, что текущая цена базового инст­румента составляет 112,00. Умножив 0,001791044776 на 112,00, мы получаем приведенное P&L = 0,2005970149. Чтобы получить полные приведенные данные, необходимо проделать эту процедуру для всех 232 торговых прибылей и убытков.

Ознакомительная версия.


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы

Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.