My-library.info
Все категории

Александр Никонов - Физика на пальцах. Для детей и родителей, которые хотят объяснять детям

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Александр Никонов - Физика на пальцах. Для детей и родителей, которые хотят объяснять детям. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Физика на пальцах. Для детей и родителей, которые хотят объяснять детям
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
222
Читать онлайн
Александр Никонов - Физика на пальцах. Для детей и родителей, которые хотят объяснять детям

Александр Никонов - Физика на пальцах. Для детей и родителей, которые хотят объяснять детям краткое содержание

Александр Никонов - Физика на пальцах. Для детей и родителей, которые хотят объяснять детям - описание и краткое содержание, автор Александр Никонов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Понимаете ли вы теорию Стивена Хокинга и теорию относительности?Знаете ли и сможете ли доступно объяснить основы квантовой физики?Расскажете об открытии Марии Склодовской-Кюри?Хотите понять самую модную науку XXI века?Неважно, учитесь ли вы в школе или уже давно закончили ее. Если вы любознательный человек, то эта книга ДЛЯ ВАС!САМАЯ ГЛАВНАЯ НАУКА – ЭТО ФИЗИКА! Так начинает эту книгу известный публицист, популяризатор теоретической науки Александр Никонов.

Физика на пальцах. Для детей и родителей, которые хотят объяснять детям читать онлайн бесплатно

Физика на пальцах. Для детей и родителей, которые хотят объяснять детям - читать книгу онлайн бесплатно, автор Александр Никонов

Одной из тех неразрешимых «мелких проблемок», которые стояли перед физиками конца девятнадцатого века и о которой говорил умудренный профессор Жолли молодому Планку, была проблема излучения так называемого черного тела. Черное тело – это придуманный физиками теоретический конструкт, вымышленный объект, который все излучения поглощает и ничего не отражает. При этом черное тело постепенно нагревается и потому переизлучает тепло уже в собственном диапазоне.

Дивиться тому, что физики взяли да и выдумали что-то, в реальном мире не существующее, не стоит. Дело в том, что физика всегда оперирует некими идеальными моделями. Как и любая другая наука. Наука ведь не гонится за истиной, как вы, быть может, ошибочно предполагаете. Наука просто строит интеллектуальные модели. И проверяет их на соответствие реальности – работает или нет, можно с ее помощью делать предсказания или нельзя. Можно – хорошая теория, берем на вооружение. Нет – ошибочная.

Все научные теории без исключения имеют ограниченную область применения и строятся для решения практических задач. А так как человеческие хотелки все растут и растут, людям хочется получить больше и больше, область решаемых задач вскоре начинает превышать возможности теории. И она перестает работать в новых условиях. Приходится строить более общую теорию, в которую старая теория входит частным случаем. Или же просто отказываться от старой теории, полностью меняя научную парадигму. Вы, я надеюсь, знаете, что такое парадигма? Парадигма – это система устоявшихся взглядов.

Так вот, в стройном здании физики позапрошлого века была одна теоретическая неясность. Исследуя излучения разных нагретых тел, физики заметили, что построенные ими красивые теории не стыкуются с отвратительной реальностью. Из теории получалось, что нагретое абсолютно черное тело должно излучать бесконечно большую энергию, что абсурдно. Теория давала сбой.

Пытаясь привести такую хорошую теорию к такой неприятной практике, буквально за волосы таща формулы к реальности. Планк сделал гениальное допущение. Оно выглядело очень искусственным, но зато сразу позволило решить проблему на бумаге. Макс Планк предположил, что энергия излучения, которое отдает нагретое тело, испускается не сплошным потоком, а порциями, которые Планк назвал квантами.

Предположение, конечно, глупое. Ну, что значит «излучается порциями»? Вот у нас есть бак, заполненный водой. Мы открыли кран, и она потекла – сплошным потоком. А почему излучение от нагретого тела должно «течь» не сплошным потоком, а каким-то пунктиром? Это же волны! Они бегут сплошняком! Что еще за порции такие дурацкие?

Однако введение этих порций в формулы дало хороший результат и позволило, что называется, подогнать решение к ответу, известному из практических наблюдений.

Работая над моделью излучения черного тела, Планк часто прогуливался по улице с сыном, не переставая думать обо всем этом. И однажды признался мальчику:

– Или то, что я делаю, абсолютная бессмыслица, или самое большое открытие в физике со времен Ньютона!

Планк, который стоял на позициях классической физики, очень расстраивался из-за того, что ему пришлось выдумать эти вот «рваные волны», которые излучаются непонятными порциями. Он рассчитывал, что кто-нибудь вскоре придумает что-то получше и исправит ситуацию, избавив мир от его дурацких квантов.

Увы! Кванты никак не хотели из теорий убираться, без них никак не получалось.

Неужели энергия тоже квантована, как и вещество? Поясню… Вещество, как мы уже знаем, делимо. Мельчайшей его частичкой является атом. Может, и энергия тоже состоит из «атомов энергии»? Стоп! А при чем тут энергия, спросите вы, ведь речь у нас об излучении? Дело в том, что энергией в физике часто называют не только такую абстрактную вещь, как энергия кинетическая или энергия потенциальная, но и вполне конкретное электромагнитное излучение. Оно считается энергией в чистом виде, так сказать… В общем, Планку формулы подогнать к реальности удалось, но по смыслу получилась какая-то ерунда, какие-то «куски волн», «куски излучения», похожие на частицы.

Пока классическая физика осмысливала получившуюся ерундень, по ней нанесли еще один удар. На сей раз постарался Эйнштейн.

Эйнштейн – не только икона современной физики, но и самый известный физик среди простого народа. Не потому, что народ понимает его теории, а потому что Эйнштейн, волосатый и озорной, – любил фотографироваться, высунув язык.

Что же натворил Эйнштейн?

Не скрою, набедокурил он изрядно. Рассказываю.

В конце XIX века физиками был открыт так называемый фотоэффект. Очень интересное явление! Оно заключается в следующем: при освещении металлической пластины светом световые лучи выбивают из этой пластины электроны. Схемка эксперимента дана ниже.

Неожиданностью в этом опыте было то, что энергия выбиваемых светом электронов совершенно не зависела от интенсивности светового потока! Слабенький он был или мощный – это влияло только на количество выбитых электронов. А вот их энергия зависела, как ни странно, от частоты света. И для любого материала катода всегда существовала такая низкая частота излучения, что фотоэффект прекращался. Это назвали «красной границей фотоэффекта», потому что чем ниже частота света, тем он ближе к красному.

Еще любопытно, что никакой медленной «накачки» электронов энергией не было, электроны начинали вылетать из металла сразу после включения лампы, словно им не нужно было «раскачиваться», набирая энергию для вылета.

Вообще-то, волновая теория света предсказывала совершенно другой результат – электроны должны сначала какое-то время накапливать энергию, причем их энергия должна была зависеть от интенсивности излучения (яркий источник света или тусклый), а не от его частоты, то есть цвета лучей. Это что же получается? Теория плохая? Но в других случаях она прекрасно работает. А тут чего-то спотыкается. Мы уже знаем: так бывает. Любая функция имеет область определения, а любая теория имеет границы своего применения. Ученые как раз вышли на эту границу. И значит, пришла пора расширять теорию!


Явление фотоэффекта. Берется стеклянная лампа хитрой формы и из нее откачивается воздух. С разных сторон в стекло впаяны два электрода – катод и анод. На них подается напряжение от батареи. Однако никакого тока в сети нет, потому что цепь не замкнута. Но если начать облучать светом катод (К), световые волны станут выбивать из металла электрончики. Освободившись из металлического плена, они под действием притяжения со стороны положительно заряженного анода (А) летят к нему, образуя электрический ток и замыкая электрическую цепь


Это и сделал Эйнштейн. Он внес в ситуацию точно такое же предположение, какое внес Планк: излучение происходит «порциями». Ну то есть излучение – это не какая-то сплошная волна, как думали раньше, а короткие «кусочки», больше похожие вообще-то на частицы. Порция – это ведь часть, и само слово «частица» произошло от слова «часть».

Впоследствии эти «кусочки света» назвали фотонами.

У фотонов нет никакой массы. Они не могут находиться в состоянии покоя. Они электронейтральны, то есть не имеют заряда. Фотон – это квант, то есть частица электромагнитного излучения. Порция живой энергии.

Один фотон попадает в один электрон и целиком передает ему свою энергию, всю порцию, после чего электрон, получивший эту энергию, пулей вылетает из кристаллической решетки металла, как подорванный.

Интенсивность (яркость) света – это количество фотонов. Много фотонов – яркий свет, мало – тусклый. Поэтому интенсивность света и влияет на число выбитых электронов, а не на их энергию, ведь один фотон выбивает только один электрон: больше яркость света – больше выбитых электронов. Энергия же выбитых электронов (то есть скорость их вылета из металла) зависит от энергии фотона, а та зависит от частоты фотона. Высокочастотные – высокоэнергичные. Поэтому если частота (то есть энергия) фотонов становится слишком маленькой для выбивания электронов из металла, фотоэффект просто пропадает. Вот такое объяснение «красной границе фотоэффекта» дал Эйнштейн.

Вроде логично. Но при этом какой-то бред вообще, вы не находите?

Ну, в самом деле, как волна может состоять из частиц, фотонов этих? Ведь волна – это, строго говоря, процесс. А частица – это, друзья мои, объект. Вот молекула, например, объект. Если мы собираем множество молекул в огромный массив, мы получаем среду. И по этой среде могут распространяться колебания, то есть синхронизированные движения объектов среды (молекул). Групповой танец молекул – это колебание. Как колебание может состоять из «частиц колебания»? Как процесс может быть объектом?

Велосипед – это объект. Езда на велосипеде – процесс.

Буханка хлеба – объект. Нарезание хлеба – процесс.


Александр Никонов читать все книги автора по порядку

Александр Никонов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Физика на пальцах. Для детей и родителей, которые хотят объяснять детям отзывы

Отзывы читателей о книге Физика на пальцах. Для детей и родителей, которые хотят объяснять детям, автор: Александр Никонов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.