My-library.info
Все категории

Яков Перельман - Занимательный космос. Межпланетные путешествия

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Яков Перельман - Занимательный космос. Межпланетные путешествия. Жанр: Прочая научная литература издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Занимательный космос. Межпланетные путешествия
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
31 январь 2019
Количество просмотров:
245
Текст:
Ознакомительная версия
Читать онлайн
Яков Перельман - Занимательный космос. Межпланетные путешествия

Яков Перельман - Занимательный космос. Межпланетные путешествия краткое содержание

Яков Перельман - Занимательный космос. Межпланетные путешествия - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
«Это сочинение явилось первой в мире серьезной, хотя и вполне общепонятной книгой, рассматривающей проблему межпланетных перелетов и распространяющей правильные сведения о космической ракете…»К. Э. Циолковский

Занимательный космос. Межпланетные путешествия читать онлайн бесплатно

Занимательный космос. Межпланетные путешествия - читать книгу онлайн бесплатно, автор Яков Перельман
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Из этого равенства и из соотношения v= pt мы выводим, что при одинаковой продолжительности горения (t = t1):

откуда

Значит,

т. е. окончательная скорость ракеты в среде тяжести меньше, чем в среде без тяжести, на такую же долю, какую ускорение (g) тяжести составляет от собственного ускорения (р) ракеты.

Далее, зная из предыдущего, что в среде без тяжести

получаем, что окончательная скорость v1 ракеты в условиях тяжести

или

Формула (2) позволяет вычислить окончательную скорость, приобретаемую ракетой в поле тяготения, если известно отношение 

 масс заряженной и незаряженной ракеты и ее собственное ускорение р. Это последнее, мы знаем, не должно превышать 4-кратного ускорения земной тяжести, чтобы быть безвредным для человеческого организма. При p = 4g имеем

Формулы эти не принимают, конечно, в расчет сопротивления воздуха.

Полезное действие свободной ракеты и ракетного экипажа

Подсчитаем, какую долю энергии потребляемого горючего ракета переводит в полезную механическую работу.

Обозначим, как прежде, массу свободной ракеты до взрывания через М t , после взрывания – через Mt , после взрывания – через Mk ; масса израсходованного горючего выразится тогда через Mt – Mk , скорость вытекания газа – с. Живая сила вытекающих газов, т. е. кинетическая энергия, равна

Это – полное количество энергии, какое способно развить находящееся в ракете горючее. Получаемая же полезная работа, т. е. кинетическая энергия ракеты при скорости V, равна

Отношение второй величины к первой и есть коэфициент k полезного действия свободной ракеты:

или

Из формулы (2) имеем, что

Значит в среде без тяжести полезное действие ракеты:

Оно достигает наибольшей величины при v/c = 1,6 и равно тогда 65 %.

Если v/c невелико, можно формулу (4) упростить, исходя из того, что

Тогда

В среде тяжести выражение для k сложнее; для случая вертикального подъема его нетрудно вывести, подставив в формулу (3) соответствующее значение-

из формулы (2).

Иначе выразится коэффициент k полезного действия ракетного экипажа (вообще – несвободной ракеты), где существенную роль играют помехи движению, как трение и сопротивление воздуха. Рассмотрим случай равномерного движения авторакеты, т. е. случай, когда работа ракеты равна работе сопротивлений. Так как импульс силы равен количеству движения, то, обозначая через ƒ силу, выбрасывающую продукты взрыва (она равна силе, увлекающей автомобиль), а через t – продолжительность движения, имеем

ft = (M-Mk)c ,

где M t – масса автомобиля до взрывания, Mk – его масса после взрывания; с – скорость вытекания газа. Для удобства обозначим Mt – Mk , т. е. запас горючего, через Q , тогда

Полезная же работа автомобиля равна:

так как путь s = vt , где v – скорость автомобиля.

Энергия, затраченная при этом, составляется из двух частей: 1) из той, которая была израсходована на приведение горючего в равномерное движение со скоростью v; эта часть равна-1/2Q v 2; 2) из той, которая расходуется на сообщение частицам отбрасываемых газов скорости с ; часть эта равна – 1/2Q c2. Вся затраченная энергия равна

Отсюда искомое полезное действие

Оно достигает наибольшей величины при v = с, т. е. когда автомобиль движется со скоростью вытекания продуктов взрыва. По этой формуле легко вычислить полезное действие ракетного автомобиля; например, для с = 2000 м/с и V = 200 км/ч = 55 м/с:

k = 5,5 %.

Чтобы соперничать в экономичности с обыкновенным автомобилем, полезное действие которого около 20 %, авторакета должна обладать скоростью не ниже 760 км/ч. Но подобная скорость для колесного экипажа практически недопустима, так как сопряжена с опасностью разрыва бандажей колес центробежным эффектом.

4. Начальная скорость и продолжительность перелетов

Начальная скорость

Читатели пожелают, вероятно, узнать, как вычисляется скорость, с которой тело должно покинуть планету, чтобы преодолеть силу ее притяжения. Вычисление основано на законе сохранения энергии. Тело должно получить при взлете запас кинетической энергии, равный той работе, которую ему предстоит совершить. Если масса тела т, а искомая скорость v, то кинетическая энергия («живая сила») тела в момент взлета

mv2/2

Работа же, совершаемая силой при перемещении с поверхности планеты в бесконечность (при отсутствии других центров притяжения), равна, как устанавливает небесная механика,

где М — масса планеты, R — ее радиус, а к — так называемая постоянная тяготения (см. Приложение 1). Абсолютную величину этой работы приравниваем к кинетической энергии:

откуда

Далее, мы знаем, что вес тела на поверхности планеты, т. е. сила, с какою планета его притягивает, равен, по закону тяготения:

если масса тела т. Механика дает нам также и другое выражение для веса – произведение массы на ускорение, та.

Значит,

откуда

и, следовательно, формула

принимает вид:

V2 = 2 aR,

откуда

Подставляя вместо а — ускорение тяжести на планете, а вместо R — радиус, получаем величину скорости, с какою тело навсегда покидает планету. Например, для Луны а = 1,62 м/с2, R = 1 740 000 м. Поэтому искомая скорость

На том же можно основать вычисление начальной скорости снаряда или ракеты, которые, покинув Землю, должны долететь до точки равного притяжения между Землей и Луной. Масса Земли в 81 раз больше массы Луны, а так как сила притяжения уменьшается пропорционально квадрату удаления, то притяжения Земли и Луны уравниваются на расстоянии от Земли в 9 раз большем, чем от Луны (тогда притяжение Земли ослабеет в 9 × 9, т. е. в 81 раз больше, чем притяжение Луны). Значит, точка равного притяжения лежит в 0,9 расстояния между Землей и Луной; последнее равно 60,3 радиуса R земного шара, так что ядро должно пролететь расстояние D = 0,9 × 60,3 R = 54,3 R. Обозначив искомую скорость, с какою тело должно покинуть Землю, через v, имеем для кинетической энергии тела в момент вылета mv2/2. где т — масса тела. Произведенная же этим телом работа, по законам небесной механики, равна потерянной потенциальной энергии, т. е. разности потенциальной энергии Е 1 и Е и конечной и начальной точках пути. Поэтому

Здесь Е1 есть потенциальная энергия тела в конечной точке пути по отношению к Земле и к Луне. Первая часть потенциальной энергии равна:

где k – постоянная тяготения, М — масса Земли, т – масса брошенного тела, D — расстояние тела от центра Земли в конечной точке пути.

Вторая доля равна потенциальной энергии (по отношению к Луне):

где к и т имеют прежние значения, М1 – масса Луны, d – расстояние тела от центра Луны в конечной точке пути.

Величина Е есть потенциальная энергия тела (в точке земной поверхности) по отношению к Земле и Луне. Она равна

где R — радиус Земли, L – расстояние от поверхности Земли до центра Луны, а к, т, М и М1 имеют прежние значения.

Итак,

или

Подставим:

Имеем:

или

откуда

Известно, что

g = 9,8 м/с2;

R = 6370 км.

Выполнив вычисления, получаем искомую скорость

v = 1 107 000 см/с = 11,07 км/с.

Указанным способом можно вычислить скорость и в других подобных случаях. Например, для определения скорости ракеты, взлетающей с Луны по направлению к Земле, имеем уравнение:

Здесь предполагается, конечно, что ракета должна достичь лишь точки равного притяжения, откуда начнется падение на Землю. Зная, что масса М 1 Луны равна M/ 81, где М – масса Земли, имеем (после сокращения на m ):

Ознакомительная версия.


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Занимательный космос. Межпланетные путешествия отзывы

Отзывы читателей о книге Занимательный космос. Межпланетные путешествия, автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.