My-library.info
Все категории

Станислав Славин - 100 великих тайн космонавтики

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Станислав Славин - 100 великих тайн космонавтики. Жанр: Прочая научная литература издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
100 великих тайн космонавтики
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
31 январь 2019
Количество просмотров:
129
Читать онлайн
Станислав Славин - 100 великих тайн космонавтики

Станислав Славин - 100 великих тайн космонавтики краткое содержание

Станислав Славин - 100 великих тайн космонавтики - описание и краткое содержание, автор Станислав Славин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Вы ошибаетесь, если полагаете, что мечта о покорении космоса и о межпланетных путешествиях зародилась в XIX–XX веках. Уже жрецы Древнего Вавилона и китайские астрономы около 5000 лет тому назад имели первичные представления о космосе и небесных телах. Фалес из Милета (VI век до н. э.), которого часто называют отцом греческой астрономии, основал школу, где, вероятно, впервые заговорили о том, что планета наша вовсе не плоская. А другой греческий ученый, Аристарх, в 280 году до н. э. даже попытался измерить относительное удаление Солнца и Луны от Земли…О ста самых удивительных и невероятных тайнах космонавтики рассказывает очередная книга серии.

100 великих тайн космонавтики читать онлайн бесплатно

100 великих тайн космонавтики - читать книгу онлайн бесплатно, автор Станислав Славин

Причем расчет показывает: если соединить две примерно одинаковые по массе платформы достаточно длинным (до 40 км) тросом, то экипажи внутри модулей смогут уже отличать вверх от низа. Вместо безразличной невесомости у них появится микрогравитация, составляющая примерно 1 % от земной. Конечно, величина эта небольшая, но уже достаточная, чтобы предметы перестали плавать по кабине, проявились понятия «пол» и «потолок».

Причем интересно, что, с точки зрения наземного наблюдателя, обитатели верхней платформы будут существовать «вверх ногами», пол у них будет выше потолка, поскольку там микротяжесть действует в обратную сторону. На нижней же платформе капля воды из стакана медленно, но верно будет опускаться к Земле.

Расчеты расчетами, но как дела с тросовыми системами обстоят на практике? Чтобы ответить на этот вопрос, в марте 1996 года на борту космического шаттла «Колумбия» был проведен эксперимент, который не привлек особого внимания средств массовой информации. Во-первых, наверное, потому, что выполнялся он по заказу не только НАСА, но и NRO – Национального управления военно-космической разведки. Во-вторых, из-за того, что похвалиться его стопроцентным исполнением астронавты никак не могли. В самый ответственный момент оборвался трос, соединявший два небесных тела, и одно из них было потеряно безвозвратно.

Тем не менее на том американцы не остановились, продолжив эксперименты с помощью космического аппарата TiPS, выведенного на орбиту 20 июня 1996 года. Запуск его, кроме прочего, был использован и для того, чтобы убедиться в принципиальной возможности получения электроэнергии в космосе с помощью тросовых систем.

Дело в том, что по мере того, как два тела расходятся друг от друга на околоземной орбите, между ними возникает электрический потенциал за счет того, что оба тела находятся на разных высотах в ионосфере Земли. И на них в единицу времени падают неравные потоки заряженных частиц ионосферной плазмы. И тем самым доставляют на их поверхность отрицательные заряды разной величины.

Как показал эксперимент, таким образом удалось получить силу тока 0,5 А при напряжении 3500 В. Вероятно, результаты были бы еще внушительнее, если бы 20-километровый трос не оборвался. Эксперимент пришлось прервать.

Тем не менее этот и другие опыты с тросовыми системами показали, что с их помощью можно решать в космосе не только транспортные, но и энергетические проблемы.

Серьезные разработки по этой части есть и у наших специалистов, в частности в ракетно-космической корпорации «Энергия». Реализация одного из проектов была намечена на вторую половину 90-х годов. Мы готовились соединить станцию «Мир» и корабль «Прогресс» 20-километровым тросом из синтетического волокна. Планировалось после недельного полета разделить связку. Корабль перешел бы на более низкую орбиту, а станция – на более высокую. В следующем эксперименте длину троса должны были увеличить до 50 км. Но, к сожалению, из-за нехватки средств осуществить свои задумки конструкторы до сих пор не смогли.

Однако 20-километровые тросы, лебедка, ряд других элементов были уже изготовлены и лежат ныне на складе. Но надо еще 1,5 миллиона долларов, чтобы довести задуманное до конца. Найти такую сумму пока не удается.

Между тем для изготовления троса был использован весьма прочный синтетический материал типа кевлар. Диаметр – 3 мм, масса 20-километрового троса – всего 70 кг. А ныне создаются новые материалы с еще лучшими характеристиками. И такой «шнур», но длиной уже не 20, а 50 км, может иметь массу менее 100 кг.

Это позволяет уже ныне приступить к изготовлению не экспериментальной, а штатно эксплуатируемой тросовой системы многократного использования для спуска с орбиты на Землю грузовых кораблей, капсул, а также отработавших свой ресурс модулей, ферм, панелей. Экономический выигрыш составит через несколько лет сотни миллионов долларов в год, а в перспективе, возможно, и миллиарды долларов.

Кроме того, трос из электропроводящих материалов может быть использован, как уже говорилось, еще и в качестве источника энергии для зарядки аккумуляторов космических объектов или питания бортовой аппаратуры.

Тут, наверное, стоит на время прервать рассказ, чтобы пояснить суть дела. В 1990 году доктор физико-математических наук Владимир Белецкий и кандидат физико-математических наук Евгений Левин опубликовали статью, в которой подробно описали все возможные применения тросовых систем. Среди прочего речь там шла и о том, что с помощью электропроводящих тросов в космосе можно осуществлять в высшей степени интересные эксперименты по получению электроэнергии.

Как же они будут происходить? Скажем, астронавты откроют люк грузового отсека орбитального космолета. В нем находится лебедка и приемная штанга длиной около 10 м. Субспутник на тросе выпущен вверх.

«Из него в разные стороны выдвинуты электрические датчики. С точки зрения действия на субспутник микротяжести его расположение вверху ничем не отличается от нижней позиции. Но в верхнем положении будет меньше аэродинамическое торможение, поскольку плотность воздуха там меньше, – писали наши ученые. – Можно ли пропускать по такому тросу постоянный ток? Казалось бы, нет. Контур не замкнут. Но ведь он движется в проводящей ионосферной плазме. Ток, текущий по тросу, может замыкаться через окружающую среду. Для этого на концах троса должны быть установлены специальные контактные устройства».

Тут мы прервем цитату, чтобы отметить прозорливость наших исследователей. Все именно так и произошло на самом деле, когда «челнок» «Колумбия» после выхода на орбиту выпустил из своего грузового отсека итальянский спутник. По мере того как оба искусственных тела расходились друг от друга, между ними возникал электрический потенциал.

В итоге удалось получить силу тока 0,5 А при напряжении 3500 В. Возможно, эти результаты удалось бы еще улучшить, но тут оборвался трос длиной около 20 км, связывающий «челнок» и спутник, так что эксперимент пришлось буквально прервать.

Тем не менее и достигнутого хватило для того, чтобы убедиться в перспективности продолжения опытов. «Тот факт, что измеренная сила тока оказалась втрое больше расчетной, сулит хорошие перспективы применения данного метода для получения энергии на околоземной орбите даже тогда, когда космический аппарат находится в тени планеты и его солнечные батареи работать не могут», – заявил ведущий научный специалист проекта из Центра космических полетов имени Дж. Маршалла Ноби Стоун.

Международная космическая станция (МКС), как известно, будет функционировать как минимум до 2015 года. На смену ей должны прийти долговременные орбитальные комплексы нового поколения, в том числе с использованием тросовых технологий. Как показывают конструкторские проработки, это будут многоблочные станции, соединенные несколькими канатами и лифтом.

Корпорация «Энергия», чтобы закрепить российский приоритет, получила патент на такую орбитальную станцию, предоставив экспертам соответствующие чертежи и расчеты. Этот комплекс может быть построен примерно к 2050 году.

Не дремлют, впрочем, и зарубежные специалисты. Эксперт центра НАСА в Кливленде Джеффри Лендис и его коллеги полагают, что современные композитные материалы на основе углерода позволят в скором будущем соорудить «вавилонскую башню» высотой 25 км. С ее вершины полезную нагрузку можно было бы выводить в космос с помощью всего одноступенчатой ракеты, а не трехступенчатой, как ныне. И если сейчас полезная нагрузка составляет примерно 2 % от стартовой массы всего носителя, то с помощью высотных запусков этот показатель удастся существенно повысить.

«Надо оснастить стартовую площадку высокой башней, а еще лучше – одновременно перенести ее на какую-нибудь высокую гору, – говорит Лендис. – Наши расчеты показывают, что старт ракеты с высоты 15 км позволяет увеличить полезную нагрузку в 1,5 раза, а с 20 км – вдвое… Строительство же подобного сооружения обойдется примерно столько же, как и возведение обычного небоскреба где-нибудь на Манхэттене».

Интересно, что подобную же идею изобретатель из Самары, специалист по ракетно-космической техники В.Н. Пикуль предложил еще в конце 90-х годов прошлого века. «Особенность моего способа состоит в медленном разгоне особой платформы с ракетой на борту по широколейному железнодорожному спуску (точнее, в данном случае – подъему), – рассказывал он. – По мере возрастания скорости подъем становится все круче, и, наконец, ракета, стартует практически вертикально, используя мощь собственных двигателей».

В свою очередь, Пикуль опирался на идею К.Э. Циолковского, красочно описанную Александром Беляевым в научно-фантастической повести «Звезда КЭЦ».

Причем строить подобные космодромы оба исследователя предлагают где-нибудь в гористых, малонаселенных местах. Горы, как уже говорилось, дают природный выигрыш в высоте – ведь вершины некоторых пиков находятся на высоте 8 км над уровнем моря.


Станислав Славин читать все книги автора по порядку

Станислав Славин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


100 великих тайн космонавтики отзывы

Отзывы читателей о книге 100 великих тайн космонавтики, автор: Станислав Славин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.