То, что осталось (фрагменты селитры минус кислород), отбирают недостающий кислород из атмосферы. Восстановленные молекулы селитры готовы снова взаимодействовать со следующими молекулами двуокиси серы и снова передать им кислород. Таким образом, задача селитры заключается в передаче кислорода из воздуха двуокиси серы, причем как можно быстрее. Она является обычным посредником и не изменяется после завершения реакции.
Удивительным фактом является не то, что катализатор ускоряет протекание реакции, не подвергаясь при этом изменениям, а то, что в этом можно заподозрить нечто волшебное. Сталкиваясь с подобными явлениями в повседневной жизни, мы и мысли о волшебстве не допускаем.
Например, вообразите картину: наполовину построенная кирпичная стена, в пяти футах от нее располагается груда кирпичей и емкость с раствором. Если это все, то в промежутке времени между 9 часами утра и 5 часами вечера ничего не изменится (разве что высохнет раствор).
А теперь представьте, что ко всему перечисленному в 9 часов утра добавился еще один фактор — человек в спецовке, стоящий между стеной и кирпичами. В указанное время у него в руках ничего нет. В 5 часов вечера вы сможете увидеть человека стоящим на том же самом месте: в руках у него опять ничего нет, сам человек не изменился, но кирпичная стена теперь выстроена целиком. А груда кирпичей исчезла.
В данном случае человек выполнил роль катализатора. Реакция произошла только благодаря его присутствию, при этом он внешне не изменился.
У нас ведь и мыслей о волшебстве не возникает, не так ли? Если бы мы наблюдали за каменщиком весь день, то видели бы, как он берет кирпичи и кладет их на стену. То, что не является волшебством для каменщика, не волшебство и для селитры.
В XIX веке были открыты и другие аналогичные вещества. К примеру, в 1812 году русский химик Готлиб Сигизмунд Кирхгоф…
Здесь я немного отвлекусь, в очередной раз положившись на бесконечное терпение и неиссякаемое чувство юмора моих уважаемых читателей.
Вы, наверное, подумали, что, назвав Готлиба Сигизмунда Кирхгофа русским химиком, я совершил грубую ошибку. Совершенно очевидно, что никто с таким именем не может быть русским. Но это зависит от того, какой аспект национальности рассматривать — этнический или географический.
Я обязательно объясню, что имею в виду, но для этого давайте вернемся к началу XIII века. В эго время территорию Курляндии и Ливонии, расположенных на юго-восточном побережье Балтийского моря (современные Латвия и Эстония), населяли последние язычники Европы. Это было время крестовых походов, и немцы, жившие поблизости, считали своим священным долгом истребить слабо вооруженных и неорганизованных варваров ради спасения их душ.
Ливонские рыцари в содружестве с присоединившимися к ним в 1237 году тевтонскими рыцарями к концу XIII века завоевали все балтийское побережье и установили там управление своих экспедиционных сил.
Тевтонские рыцари осуществляли управление только на протяжении двух веков, после чего были разбиты поляками в 1460 году. Шведы под предводительством Густава Адольфа одержали победу в 1620 году; а в 1720 году шведов потеснили русские, во главе которых стоял Петр Великий.
Однако независимо от политических течений, флагов и монархов, за здоровье которых провозглашали тосты законопослушные местные жители, эта земля принадлежала «балтийским баронам» (они же балты), которые были говорящими по-немецки потомками тевтонских рыцарей.
Петр Великий активно стремился ближе познакомиться с жизнью западных стран. Он построил свою новую столицу Санкт-Петербург[10] рядом с границей Ливонии и относился к балтам с большим уважением.
Такая же ситуация сохранилась в XVIII и XIX веках: в это время балты сохраняли большое влияние в Российской империи, совершенно непропорциональное их небольшой численности. Поэтому их влияние не могло не коснуться и русской науки.
Дело в том, что народное образование в России далеко отставало от западного. Сменявшие друг друга цари не видели никакого смысла в обучении широких народных масс. По-видимому, они инстинктивно понимали, что не слитком умное и погрязшее в коррупции правительство может спокойно себя чувствовать, только если население будет оставаться темным и необразованным.
Поэтому даже те немногие представители русской элиты, которые хотели получить светское образование, были вынуждены отправляться за границу, особенно если они стремились заниматься наукой. Но ехать за границу это всегда непросто. Приходится изучать чужой язык, новые обычаи, традиции. Более того, Русская православная церковь считала всех представителей западного мира еретиками, что было немногим лучше, чем язычники. Связи с языческими обрядами (например, наукой) трактовались в лучшем случае как опасные. В худшем можно было заработать проклятие. Поэтому отправлявшийся учиться на Запад русский должен был преодолеть немалые религиозные препоны.
Балты сохранили немецкую культуру, по религиозным убеждениям они были лютеранами и не были ограничены подобными запретами. Также как и немцы, жившие на территории Германии, они были хорошо образованы и активно занимались наукой, особенно в XVIII–XIX веках.
Вот почему среди великих русских ученых XIX века присутствуют люди, носящие такие имена, как Готлиб Сигизмунд Кирхгоф, Фридрих Конрад Бейльштейн, Карл Эрнст фон Баер и Вильгельм Оствальд.
Я вовсе не имею в виду, что в этот период у русских не было своих ученых (с русскими именами). Достаточно упомянуть о Михаиле Васильевиче Ломоносове, Александре Онуфриевиче Ковалевском и Дмитрии Ивановиче Менделееве.
Однако официальные лица России явно отдавали предпочтение балтам (которые всемерно поддерживали царское правительство, создававшее им все условия для процветания), а не русской интеллигенции, доставлявшей хлопоты.
Остается только добавить, что в XIX веке немцам было самой судьбой предопределено заниматься наукой. Вероятно, немецкий акцент в русской речи мог считаться признаком причастности к науке. (Прежде чем усмехаться по этому поводу, подумайте, каким был американский стереотип ученого создателя ракет. Он имел устойчивый немецкий акцент, nicht war? И это несмотря на то, что один из пионеров ракетной техники и космонавтики, давший немцам основу для дальнейших работ, имел гнусавый выговор уроженца Новой Англии. Вы наверняка поняли, что я имею в виду Роберта Годдарда.)
Так уж сложилось, что Академия наук, существовавшая в Российской империи, оказалась разделенной на русскую и немецкую части, причем ведущей была вовсе не русская.
В 1880 году в академии появилась вакансия специалиста в области химической технологии, на которую претендовали двое: с немецкой стороны Бейльштейн, с русской — Менделеев. Строго говоря, этих двоих людей нельзя было даже сравнивать. Бейльштейн посвятил много лет своей жизни подготовке энциклопедии свойств и методов приготовления нескольких тысяч органических соединений, которые впоследствии обросли многочисленными приложениями и дополнениями и до сих пор считаются библией химиков. Это монументальный труд, показывающий необыкновенное трудолюбие и глубокую компетентность его создателя, но не более того. С другой стороны, Менделеев, создатель Периодической системы элементов, был звездой первой величины, общепризнанным гением.
Тем не менее, официальные лица отдали предпочтение Бейльштейну, который был избран в академию с преимуществом в один голос (десять против девяти).
Поэтому не стоит удивляться, что в последние годы, когда русским, наконец, удалось отвоевать по праву причитающееся им место под солнцем, они все делают как-то чересчур… Должно быть, стараются наверстать упущенное.
Но вернемся к предмету нашего разговора. На протяжении XIX века было открыто довольно много ускорителей химических реакций. В 1812 году русский химик Готлиб Сигизмунд Кирхгоф обнаружил, что, если кипятить крахмал в воде, добавив туда небольшое количество серной кислоты, образуется глюкоза. При отсутствии серной кислоты этого не происходит. Когда же эта реакция идет в присутствии серной кислоты, кислота в ней не участвует и в конце остается в неизменном количестве.
Затем в 1816 году английский химик Хамфри Дэви обнаружил, что пары определенных веществ, например алкоголя, соединяются с кислородом значительно легче в присутствии некоторых металлов, например платины. Водород также легче соединяется с кислородом в присутствии платины.
И снова химики начали экспериментировать с платиной. В 1823 году немецкий ученый Йоганн Вольфганг Дёберейнер создал водородный генератор, который при повороте запорного крана выстреливает струю водорода на полоску платиновой фольги. Водород сразу же вспыхивает. Получившуюся «лампу Дёберейнера» можно считать первой зажигалкой. К сожалению, загрязнения в составе водорода очень быстро портили катализатор, и полоска дорогостоящей платины становилась непригодной к дальнейшему использованию.