My-library.info
Все категории

Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Наблюдения и озарения или Как физики выявляют законы природы
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
146
Читать онлайн
Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы

Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы краткое содержание

Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы - описание и краткое содержание, автор Марк Перельман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Наблюдения и озарения или Как физики выявляют законы природы читать онлайн бесплатно

Наблюдения и озарения или Как физики выявляют законы природы - читать книгу онлайн бесплатно, автор Марк Перельман

Принципиально важно отметить, что здесь физика самых малых по времени жизни и по размерам образований смыкается с физикой самых грандиозных процессов в мире.

Кронин и Фитч были за свой эксперимент удостоены Нобелевской премии 1980 г., однако до сих пор остается все же непонятным, чем вызван этот факт несохранения — полной теории, как объяснения причин такого распада, так и оценок итогов этих процессов в эволюции Вселенной, все еще нет.

3. Типы нейтрино и лептонный заряд

Итак, существуют только левополяризованные нейтрино и правополяризованные антинейтрино. Но это означает, что к ним не подходит уравнение Дирака, описывающее остальные фермионы: оно дает для частицы и античастицы четыре решения, а здесь их только два. И тут вспомнили, что еще в 1929 г. знаменитый математик Герман Вейль предлагал двухкомпонентное уравнение для электрона, отброшенное как раз потому, что оно не сохраняло четность[40]. Но согласно этому уравнению масса нейтрино должна строго равняться нулю, и хотя большинство теоретиков в этом уверены, поиски и определение его массы все еще продолжается. На сегодня (2010 г.) можно сказать, что масса нейтрино, вылетающих при бета-распаде ядер, не превышает в энергетических единицах 3 эВ, т. е. менее одной стотысячной от массы электрона (0,51 МэВ).

Но оказалось, что существует много разных нейтрино. И дело было так.

Со дня своего открытия в 1937 г. мюоны представляли особый предмет, вызывающий головную боль у теоретиков. Вначале думали, что они имеют отношение к ядерным силам, потом оказалось, что они очень слабо взаимодействуют с ядрами и столь схожи с электронами, только в 207 раз тяжелее, так что их хотелось принять за «возбужденные» электроны. Но если это возбужденные электроны, то они должны, испустив гамма-квант, превращаться в электроны или позитроны, т. е. обязательно должен наблюдаться такой распад: μ-е- + γ. Этот распад искали все и… никто никогда его не наблюдал!

Нет, мюон распадался, и при этом энергия вылетающих электрона или позитрона менялась в очень широких пределах, а это означало, что он распадается, по крайней мере, на три частицы, две из которых — типа нейтрино: μ-е- + ν + ͞ν. Но если бы они были действительно нейтрино и антинейтрино, они могли бы превратиться в гамма-квант, а раз этого не происходит — значит, они частицы разного типа!

Приходилось признать, что есть какие-то электронные нейтрино и мюонные нейтрино, а реакции распада мюонов должны записываться как

μ-е- + νμ + ͞νe

μ+е- + νμ + ͞νe

Р. Фейнман как-то рассказывал, что когда его что-то особенно интересует, то он пишет условия задачи на одной из досок в кабинете, чтобы они были всегда перед глазами, и потом вносит добавочные сведения. Так вот, на одной из досок он нарисовал в верхнем левом углу значки:«μ?», — а за следующие 20 лет ничего к ним не добавил…

Непосредственно получить мюонные нейтрино смогли в 1960–1962 гг. Леон Ледерман (р. 1922), Мелвин Шварц (р. 1932) и Джек Штейнбергер (р. 1921). Чтобы оценить всю сложность подобных экспериментов, опишем их работу чуть подробнее.

По расчетам из каждых 10 миллиардов нейтрино, проходящих через Землю, только одна частица вступает во взаимодействие со своим окружением. Поэтому их эксперимент проводился таким образом. Мощный поток протонов из ускорителя направлялся на мишень из бериллия, так что поток образовавшихся на ней частиц включал в себя множество пионов. Их распад на лету порождал мюоны и мюонные нейтрино, и продукты распада направлялись на стальной барьер толщиной в 13,4 м, который заведомо должен был поглотить все частицы кроме нейтрино. Затем этот поток нейтрино вводился в большой алюминиевый детектор, в котором несколько нейтрино могли, наконец, провзаимодействовать с атомами алюминия. Анализируя эти взаимодействия, физики и обнаружили мюонные нейтрино и смогли определить некоторые их параметры (Нобелевская премия 1988 г.).

Таким образом, семейство слабо взаимодействующих частиц включало в себя пары (μ+, μ-), (е+, е-), (νμ,͞νμ), (νе,͞νе) — их всех назвали лептонами (от греческого и еврейского — мелкая монета, мелочь, ср. русскую идиому «внести свою лепту»). Название это прижилось, хотя оказалось не очень удачным.

В 1975 г. Мартин Перл (р. 1929, Нобелевская премия 1995 г.) открыл — при изучении на коллайдере столкновений высокоэнергичных пучков электронов и позитронов — еще один лептон, названный тритоном (от греческого — третий) или τ-лептоном. Как будто в насмешку над родовым именем «лептон», масса его оказалась примерно вдвое больше массы протона или нейтрона, но свойства были того же типа, как у электронов или мюонов: его рождение или распад всегда связаны с появлением специфического, только ему сопутствующего тау-нейтрино. Если среднее время жизни мюона — порядка двух миллионных секунды, то тау-лептон распадается в миллиард раз быстрее, но зато, так как у него большая масса, он может распадаться многими разными путями.

Неизвестно также, могут ли существовать и другие типы лептонов. Дело в том, что еще одно двухкомпонентное уравнение предлагал в 1937 г. Этторе Майорана (1906–1938, гениальный, по-видимому, физик, сотрудник Ферми, причины исчезновения которого остаются неизвестными). В его теории частицы и античастицы должны быть тождественными — эти майорановские лептоны тоже ищут, но пока безрезультатно. (Опять физики берут на вооружение старый принцип демократии: все, что не запрещено, — разрешено, а запретов на существование таких частиц тоже нет.)

А вот есть ли у этих нейтрино, мюоного и тау-лептонного, масса или нет — вопрос до сих пор нерешенный: из измерений следует пока только, что у νμ масса не может превышать одной десятой массы электрона, а у ντ она не больше, чем масса сорока электронов. Лептоны подразделяются, очевидно, на три семейства: электронное (е, νе), мюонное (μ, νμ) и тау (τ, ντ) — и для каждого из них есть свой закон сохранения, есть, иными словами, три вида лептонных «зарядов» (впервые, по-видимому, понятие лептонного заряда ввел Я. Б. Зельдович еще в 1952 г.). А вот являются эти законы сохранения абсолютными, или возможны переходы одного типа нейтрино в другой — это точно не известно, хотя астрономические данные говорят, как будто, в пользу возможности таких переходов.

4. Структура нуклонов: «шуба» частиц

Можно ли говорить о том, как устроены внутри элементарные частицы? Это, казалось бы, бессмысленно, потому что, если у них есть внутренняя структура, то их можно будет разбить на более простые части.

Но с другой стороны, представлять их точечными образованиями тоже не удается. И фактически, первый пример тому дало изучение свойств нейтрона. У нейтрона нет электрического заряда, но есть, однако, магнитный момент, а он, мы знаем, эквивалентен наличию электрического тока. Отсюда следует, что нейтрон должен какое-то время пребывать в виде двух заряженных частиц, вращающихся вокруг общего центра, а потому эквивалентных току. И Э. Ферми вскоре после открытия пионов подсчитал, что нейтрон должен примерно 20 % времени проводить в виде системы «протон + пи-минус-мезон» (пπ-р) — возможность возникновения такой системы определяется принципом неопределенности Гейзенберга, по которому, напомним, частица может на какое-то время «одалживать» часть своей энергии (массы) другой, только бы произведение этой энергии на время отдачи не превышало величины постоянной Планка.

Но тогда и протон может часть своего времени проводить как «нейтрон + пи-плюс-мезон» (р ↔ π+n, возможны и переходы р ↔ π0р — «протон + пи-ноль-мезон»). А дальше естественно заключить, что на какую-то меньшую часть времени и, соответственно, на более близком к центру расстоянии нейтрон может породить не один, а два, три и т. д. пионов, а может, скажем, породить на еще меньшее время пару протон-антипротон и т. д. Все такие «временные» частицы называются виртуальными (от латинского «виртуалис» — скрытые, но могущие проявиться) и, как видим на примере магнитных моментов нейтрона, их свойства весьма ясно проявляются и могут быть, в принципе, измерены.

Все эти возникающие и снова исчезающие виртуальные частицы образуют вокруг своего «хозяина» некую виртуальную «шубу». Поэтому основную рассматриваемую частицу никак, с одной стороны, нельзя считать точечной, а с другой стороны, ей нельзя приписывать и строго определенные размеры: ее «шуба» все время дышит, меняется, является динамическим образованием. Приходится для описания свойств этой «шубы», т. е. самой частицы, вводить понятие формфактора, распределения вероятности найти заряды на таком-то расстоянии от ее центра.


Марк Перельман читать все книги автора по порядку

Марк Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Наблюдения и озарения или Как физики выявляют законы природы отзывы

Отзывы читателей о книге Наблюдения и озарения или Как физики выявляют законы природы, автор: Марк Перельман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.