Рис. 16
Но давайте вернемся к нашей теме. Каким образом правила Фейнмана, позволяющие кратко сформулировать суть стандартной модели, задают способы, с помощью которых мы можем разрушать массу и превращать ее в энергию? Как мы можем применить эти правила для лучшего использования уравнения E = mc²? Для начала вспомним важный вывод, к которому мы пришли в главе 5: свет состоит из частиц без массы. Другими словами, фотоны – это частицы, не имеющие массы. В связи с этим мы можем нарисовать интересную диаграмму – как показано на рис. 17. Электрон и антиэлектрон (позитрон) сталкиваются друг с другом и аннигилируют, образуя при этом один фотон (давайте обозначим для ясности электрон символом e−, а позитрон – e+). Правила Фейнмана допускают такое взаимодействие. Эта диаграмма заслуживает особого внимания, поскольку отражает ситуацию, в которой мы начали с небольшого количества массы (электрон и позитрон имеют определенную массу), а закончили ее полным отсутствием (фотоном). Это первичный процесс разрушения материи, в ходе которого вся исходная энергия, заключенная в массе электрона и антиэлектрона, высвобождается в виде энергии фотона. Однако здесь есть одно противоречие. Аннигиляция в один фотон запрещена правилом, согласно которому все происходящее должно подчиняться законам сохранения энергии и импульса одновременно, а для данного процесса это невыполнимо (это не совсем очевидно, но мы не станем приводить здесь доказательства). Однако это противоречие легко обойти, просто образовав два фотона. На рис. 18 показана соответствующая диаграмма Фейнмана, где исходная масса снова полностью разрушилась и превратилась в энергию, в данном случае в два фотона. Процессы такого рода сыграли ключевую роль на раннем этапе формирования Вселенной, когда материя и антиматерия почти полностью уничтожили друг друга именно в ходе подобного взаимодействия. Сейчас мы наблюдаем остатки этого взаимного уничтожения. Астрономы установили, что на каждую частицу, существующую во Вселенной, приходится около 100 миллиардов фотонов. Другими словами, из каждых 100 миллиардов частиц материи, возникших после Большого взрыва, выжила только одна. Все остальные, как наглядно показывает диаграмма Фейнмана, использовали имеющуюся у них возможность избавиться от своей массы и превратиться в фотоны.
Рис. 17
Рис. 18
На самом деле то вещество во Вселенной, из которого созданы звезды, планеты и люди, представляет собой крохотный остаток, сохранившийся после грандиозной аннигиляции массы, произошедшей в самом начале формирования Вселенной. Тот факт, что вообще что-то осталось, – не просто большая удача, а настоящее чудо! Мы до сих пор не совсем понимаем, почему это произошло. Вопрос, почему Вселенная не наполнена только светом и больше ничем, по-прежнему остается открытым, и во всем мире проводятся эксперименты, которые должны нам помочь найти на него ответ. В количестве умных идей нет недостатка, но нам еще предстоит найти убедительные экспериментальные данные или доказательства того, что все они ошибочны. Советский ученый Андрей Сахаров выполнил новаторскую работу в этой области. Он первым сформулировал критерии, которым должна удовлетворять любая успешная теория, преследующая цель ответить на вопрос, почему после Большого взрыва вообще осталась материя.
Мы с вами уже знаем, что у Вселенной есть механизм для разрушения массы, но, к сожалению, он не очень пригоден для использования на Земле, поскольку для этого необходим способ производства и хранения антиматерии. Нам негде добыть антиматерию, и, насколько нам известно, в открытом космосе ее тоже нет. В качестве топлива антиматерия представляется бесполезной, поскольку такого топлива просто нет. Антиматерию можно создать в лаборатории, но только потратив на это огромное количество энергии. Следовательно, хотя процесс аннигиляции материи и антиматерии представляет собой уникальный механизм превращения массы в энергию, он не поможет нам преодолеть мировой энергетический кризис.
А как насчет ядерного синтеза – процесса, который обеспечивает энергией Солнце? Как его можно описать в терминах стандартной модели? Для этого необходимо сфокусировать внимание на вершине диаграммы Фейнмана, в которой участвует частица W. На рис. 19 показано, что происходит, когда слияние двух протонов образует дейтрон. Если вы помните, протоны (в хорошем приближении) состоят из трех кварков: двух верхних и одного нижнего. Дейтрон состоит из одного протона и одного нейтрона, а нейтрон также содержит три кварка, но на этот раз речь идет об одном верхнем и двух нижних. Диаграмма показывает, как один из протонов можно превратить в нейтрон; как видите, ключевую роль в этом процессе играет частица W. Один из верхних кварков, входящих в состав протона, выделил частицу W и превратился в результате в нижний кварк, тем самым преобразовав протон в нейтрон. Согласно этой диаграмме частица W не остается в таком состоянии. Она прекращает свое существование и превращается в антиэлектрон и нейтрино[54]. Частицы W, образующиеся в ходе формирования дейтрона, всегда погибают. На самом деле их никто никогда не видел, разве что в виде вещества, в которое они преобразуются, когда покидают этот мир. Как показывает опыт, почти все элементарные частицы умирают, потому что вершина диаграммы Фейнмана разрешает это. Исключение из этого правила наблюдается каждый раз, когда невозможно обеспечить сохранение энергии или импульса, а это чаще всего означает, что остаются только самые легкие частицы. Именно этим объясняется тот факт, что вещество, состоящее в основном из протонов, электронов и фотонов, доминирует в повседневной жизни. Этим частицам просто не на что распадаться: верхние и нижние кварки – самые легкие, электрон – самый легкий заряженный лептон, а фотон вообще не имеет массы. Например, мюон во многом идентичен электрону, за исключением того, что он тяжелее. Если вы помните, мы уже говорили об этом, когда обсуждали брукхейвенский эксперимент. Так как масса мюона изначально больше массы электрона, его превращение в электрон не нарушит закон сохранения энергии. Кроме того, как показано на рис. 20, правила Фейнмана разрешают такое превращение, а учитывая, что при этом выделяется также пара нейтрино, нет проблем и с сохранением импульса. Главное в том, что мюоны все же распадаются и живут в среднем 2,2 микросекунды. Кстати, 2,2 микросекунды – очень длительный период по шкале времени большинства интересных процессов в физике элементарных частиц. Напротив, электрон – самая легкая частица стандартной модели и ему просто не на что распадаться. Насколько можно судить, электрон, предоставленный самому себе, никогда не распадется, поэтому единственный способ победить его – заставить аннигилировать вместе с его партнером из антиматерии.
Рис. 19
Рис. 20
Но вернемся к дейтрону. На рис. 19 показано, как он может образоваться в результате столкновения двух протонов. Кроме того, в каждом случае такого слияния можно обнаружить один антиэлектрон (позитрон) и одно нейтрино. Как мы уже отмечали, нейтрино поддерживают очень слабое взаимодействие со всеми остальными частицами Вселенной. Согласно основному уравнению именно так все и происходит, потому что нейтрино – единственная частица, которая вступает только в слабое взаимодействие. В итоге нейтрино, которые рождаются в сердце звезды, могут без всяких усилий сбежать от нее – они разлетаются во всех направлениях, а некоторые отправляются в сторону Земли. Подобно Солнцу, Земля для нейтрино почти прозрачна, и они проходят сквозь нее, даже не замечая, что она встретилась им на пути. Вместе с тем у каждого нейтрино все же есть небольшой шанс вступить во взаимодействие с атомом на Земле. Выше уже упоминалось, что это взаимодействие обнаруживается с помощью таких установок, как детектор Super-Kamiokande.
Как мы можем быть уверены в правильности стандартной модели, во всяком случае на том уровне точности, который обеспечивает современная экспериментальная база? На протяжении многих лет стандартную модель подвергали самым строгим тестам в разных лабораториях мира. Не стоит беспокоиться о том, что ученые предвзято относятся к этой теории. Те, кто проводит такие испытания, очень хотели бы найти слабые места или недостатки в стандартной модели и делают все возможное, чтобы ее развалить. Их мечта – хотя бы на мгновение увидеть новые физические процессы, которые могут открыть поражающие воображение новые перспективы и величественную картину внутреннего устройства Вселенной. Однако до настоящего времени стандартная модель выдержала все испытания.