Ознакомительная версия.
Глава 12
«Звездные врата». Миражи электронной парапсихологии
Нет сомнения, что способность мозга делать выводы и предвидеть последствия в ходе эволюции человека чрезвычайно возрастает. Она ведет его к величайшим открытиям о закономерностях в явлениях природы и в жизни самого человека. Привычка задавать вопросы является плодом древней потребности к овладению знаниями как гарантии безопасности, что является характерной и временами болезненной отличительной чертой человечества… Она ведет человека по меньшей мере к двум величайшим открытиям: с одной стороны, к тому, что каждый индивидуум умрет, а с другой – к тому, что было время, когда не существовало ни одного человеческого существа. Подобное знание продолжает поражать нас и многих повергает в такое отчаяние и неуверенность, что они начинают искать утешения в мистике, что человечество, должно быть, делает с тех самых пор, как начало говорить и мыслить.
Дж. Янг. Введение к изучению человекаВ конце восьмидесятых годов прошлого века на книжных прилавках Нью-Йорка появилась книга малоизвестного мистика Майкла Талбота «Вселенная как голограмма». В ней начинающий литератор создал сумбурную эклектическую картину человеческого мозга, «телепатически» растворенного по всей Вселенной.
К своему рассказу о чудесах строения сознания Талбот приступает с того, как в начале сороковых годов прошедшего столетия молодой американский нейрохирург Карл Прибрам занялся исследованиями природы человеческой памяти, в частности вопросом, сильно волновавшим всех нейрофизиологов, – где же расположено это поистине невероятное по объему вместилище знаний? Тогда господствовало мнение, что память рассредоточена или, наоборот, сконцентрирована в некоторых областях коры головного мозга. Например, блок воспоминаний о некотором периоде времени – дне, неделе или даже месяце – «впечатывается» на клеточном уровне в сером веществе мозга, ответственном за процессы высшей нервной деятельности. Такие клеточные «следы памяти», или, правильнее сказать, ее физиологические носители, еще в начале XX века назвали энграмами. К началу исследований Прибрама было совершенно неясно, какие именно клетки мозга или даже молекулы особого рода ответственны за процессы запоминания, но большинство ученых было твердо уверено, что со временем энграмы будут непременно обнаружены.
Сначала Прибрам полностью разделял общепризнанную теорию энграм. Но затем произошло нечто, в корне изменившее его взгляды. В 1946 году он начал работать с выдающимся нейропсихологом Карлом Лэшли. Лэшли предоставил в распоряжение Прибрама большое количество данных, накопленных в течение тридцати лет экспериментальной работы по исследованию загадочного механизма памяти. Проанализировав опыты Лэшли, Прибрам неожиданно пришел к выводу, что они в значительной мере ставят под сомнение само существование энграмов. Лэшли занимался тем, что обучал крыс выполнять серию задач – например, выискивать наперегонки кратчайший путь в лабиринте. Затем он удалял различные участки мозга крыс и заново подвергал их испытанию. Его целью было локализовать и удалить тот участок мозга, в котором хранилась память о способности бежать по лабиринту. К своему удивлению, он обнаружил, что вне зависимости от того, какие участки мозга были удалены, память в целом нельзя было устранить. Обычно лишь была нарушена моторика крыс, так что они едва ковыляли по лабиринту, но даже при удалении значительной части мозга их память оставалась нетронутой.
Для Прибрама это были исключительно важные открытия. Если память хранилась в определенных участках мозга, подобно тому как книги располагаются в определенных местах на полках, то почему хирургическое вмешательство не влияло на нее? В понимании Прибрама единственным ответом могло быть то, что конкретная память не локализуется в определенных участках мозга, а каким-то образом распределена по всему мозгу как единое целое. Проблема состояла в том, что Прибрам не мог даже предположить, какой именно физический механизм или процесс может быть ответственен за такое странное явление. В Йельском университете Прибрам продолжал обдумывать свою гипотезу о том, что память, судя по всему, распределена в мозговой ткани, и чем больше он размышлял об этом, тем более убедительной казалась гипотеза. Все пациенты, у которых мозг был частично удален по медицинским показаниям, никогда не жаловались на потерю конкретной памяти. Лишь удаление значительной части коры головного мозга приводило к тому, что память пациента становилась как бы «расплывчатой», но никто еще не терял после операции избирательную, так называемую селективную память. Например, люди, получившие тяжелые травмы головного мозга, как правило, всегда помнили своих родных, близких и знакомых. Практически никогда они не теряли и оперативной памяти: как держать в руке столовые приборы, ходить или даже кататься на коньках и велосипеде. Даже удаление височных долей, в которых, по мнению многих ученых, располагались отделы запоминающих мозговых структур, как правило, не приводило к существенным провалам в памяти пациента.
В течение десятилетий Прибрам никак не мог развить свои идеи и лишь продолжал накапливать обширный экспериментальный материал, доказывавший его теорию распределенного характера памяти в коре головного мозга. И лишь в середине шестидесятых годов ему на глаза попалась научно-популярная статья, описывающая принципы построения оптических голограмм. Статья содержала и краткое изложение теории создания объемных оптических изображений с помощью недавно открытых квантовых генераторов – лазеров.
Открытие принципа голограммы было революционным не только само по себе: оно сулило решение той головоломки, с которой Прибрам столько лет безуспешно боролся… Он понял, что память как одна из центральных функций мозга имеет распределенный, а не локализованный характер. Если каждый кусочек голографической пленки может содержать информацию, по которой создается целое изображение, то совершенно аналогично каждая часть мозга может содержать информацию, восстанавливающую память как целое.
Память – не единственная функция мозга, в основе которой лежит голографический принцип. Еще одно открытие Лэшли заключалось в том, что зрительные центры мозга обнаруживают удивительную сопротивляемость хирургическому вмешательству. Даже после удаления у крыс 90 % зрительного отдела коры головного мозга (часть мозга, которая принимает и обрабатывает видимое глазом) они были в состоянии выполнять задачи, требующие сложных зрительных операций. Аналогичные исследования, проведенные Прибрамом, показали, что 98 % оптических нервов у кошек могут быть удалены без серьезного нарушения их способности выполнять сложные зрительные задачи. Это можно сравнить с ситуацией, когда зрители в кинотеатре смотрят кинофильм на экране, 90 % площади которого удалено.
Таким образом, проведенные Прибрамом эксперименты еще раз подвергли сомнению общепринятую концепцию зрительного восприятия, основанную на взаимно-однозначном соответствии между видимым образом и тем, как он представлен в мозгу. Другими словами, считалось, что, когда мы смотрим на квадрат, электрическая активность зрительной области коры головного мозга также принимает форму квадрата. Нечувствительность, которую, как оказалось, проявляет зрительная область мозга к хирургическому вмешательству, означала, что зрение, как и память, имеет распределенный характер. Ознакомившись с теорией голографии, Прибрам начал рассматривать ее как возможное объяснение работы мозга. Природа голограммы как целого, заключенного в части, вполне могла объяснить, почему удаление большой части коры головного мозга не нарушает способность мозга выполнять зрительные задачи. Если мозг обрабатывает изображения с помощью некоторой внутренней голограммы, даже небольшая часть этой голограммы могла бы восстановить увиденную ранее целую картину. Эта теория также объясняла отсутствие взаимного соответствия между внешним миром и электрической активностью мозга.
Действительно, если мозг использует голографический принцип для обработки зрительной информации, взаимное соответствие между изображением и электрической активностью должно быть не больше, чем соответствие между отвлеченной интерференционной картиной на фрагменте голографической пленки и самим закодированным на пленке изображением. Однако оставалось непонятным, какие волновые явления в мозгу способны создавать такие внутренние голограммы. Как только Прибрам сформулировал для себя этот вопрос, он тотчас же начал искать возможный ответ. К тому времени было известно, что в электрическом взаимодействии между нервными клетками мозга, или нейронами, с необходимостью принимает участие прочая мозговая ткань.
Ознакомительная версия.