В связи с этим Э. Уитни искал способы выпуска машин без ремесленников высокой квалификации. Для этого Э. Уитни ввел разделение труда, разбив весь процесс выпуска машины на отдельные операции, выполнявшиеся отдельными рабочими. Кроме этого, ему пришлось решить, как сказали бы сейчас, проблемы унификации и взаимозаменяемости узлов и деталей машины. Таким образом, если до этого рабочие-ремесленники работали каждый отдельно, обособленно, то теперь они должны были действовать согласованно друг с другом. На этой основе он объединил рабочих, говоря современным языком, в производственную систему по выпуску хлопкоуборочных машин.
На данном примере можно видеть, что функции рабочих, процессы, которые каждый из них осуществлял, становятся качественно другими при объединении их в производственную систему.
Субъекты, объекты и результаты деятельности при превращении их в элементы систем качественно изменяются, между ними появляются взаимосвязи, что позволяет создать структуру системы. Элементарные процессы, осуществляемые отдельными элементами системы, взаимодействуют между собой и образуют процесс системы.
В рассматриваемом примере процесс системы – это производственный процесс в системе по выпуску хлопкоуборочных машин. Этот процесс уже предъявляет к квалификации рабочего другие требования. Рабочий с квалификацией, удовлетворяющей требованиям хотя бы одного элементарного процесса системы, может стать элементом производственной системы, если он отвечает требованиям умения работать в этой системе, напр., требованию коммуникабельности.
В результате в системах наблюдается синергетическое взаимодействие, так как в них наблюдается взаимное дополнение и усиление элементов.
Следовательно, для формирования и осуществления производственной системы совокупность элементов производственной системы должна удовлетворять следующим основным условиям:
каждое рабочее место – элемент производственной системы, должно осуществлять элементарный производственный процесс, адекватный назначению системы, и
взаимодействия между рабочими местами – элементами производственной системы, должны дополнять и усиливать возможности элементов и системы в целом.
Очевидно, что осуществить эти условия построения производственной системы, как и большинство других условий построения производственной системы, можно также с помощью регулярного инженеринга (реинженеринга) производственной системы.
• Границы системы. Обязательным компонентом модели производственной системы должно являться описание ее границ с внешней средой и границ с внутренней средой ее элементов.
• Определение модели границ системы с ее внешней средой проводится следующим образом.
Если составить модели всех элементов системы и причинно-следственных отношений между ними, то все элементы, которые связаны причинно-следственными отношениями между собой, а также причинно-следственные отношения только между элементами системы входят в модель системы.
Совокупность причинно-следственных отношений, которые связывают элементы системы с элементами внешней среды на входе и на выходе системы, описывают границы системы с внешней средой.
Если описать все причинно-следственные отношения, направленные к системе от внешней среды, то мы получим модель границы системы с внешней средой на ее входе. Если описать все причинно-следственные отношения, направленные от системы к внешней среде, то мы получим модель границы системы с внешней средой на ее выходе.
• Определение модели границ системы с внутренней средой ее элементов проводится следующим образом. Если описать элемент системы, как систему (назовем ее микросистемой), то все элементы микросистемы и причинно-следственные отношения только между ними войдут в модель элемента, как микросистемы.
Два причинно-следственных отношения между элементом и системой (одно на его входе и другое на его выходе) составят модель границы системы с внутренней средой данного элемента.
Эти причинно-следственные отношения между элементом и системой являются также и причинно-следственными отношениями этого элемента с двумя другими элементами этой системы.
Совокупность пар причинно-следственных отношений между элементами системы и системой составят модель границы системы с внутренней средой ее элементов.
По этой причине необходимо при моделировании взаимодействий между элементами системы учитывать не только желаемые целесообразные, в смысле цели создания системы, взаимодействия между ними, но и те воздействия, которые могут «пойти» по каналам взаимодействия из внутренней среды ее элементов. В производственной системыах, как и в других системах, такие воздействия могут происходить в результате взаимодействия внутренней среды работающего (микросистемы данной производственной системы) с внешней средой системы. Это могут быть воздействия климата, социальной среды, городского транспорта, страховых компаний, профсоюза, семьи, магнитного поля Земли, морально-волевых качеств работающего и т.д.
• Процесс и структура системы. Производственные системы можно изучать в процессе инженеринга только при наличии моделей процесса и структуры управления.
Процесс производственной системы моделируется как некоторая совокупность целесообразных элементарных преобразований ресурса – элементарных процессов производства продукта производственной системы. Все эти преобразования моделируются, как функции времени.
Процесс производственной системы – это то, с помощью чего производственная система реализуется во времени. Модели производственного процесса – временные модели.
Структура производственной системы моделируется как некоторая совокупность элементов производства (людей, машин, аппаратов, оборудования, автоматизированных рабочих мест), внутри каждого из которых локализовано протекание определенного элементарного процесса производственной системы. Все эти элементы производственной системы имеют «привязку» к определенному месту в пространстве (вода, воздух, земля, космическое пространство).
Структура производственной системы – это то, с помощью чего производственная система реализуется в пространстве. Модели производственной структуры – пространственные модели.
• Для моделирования процессов и структур систем часто используется принцип «черного ящика», согласно которому для предсказания поведения системы (или ее подсистемы) не обязательно точно знать, как именно устроены ее процесс и структура. Этот принцип широко применяется при моделировании таких больших систем, как производственные системы, на основе анализа характеристик информации о входных и выходных потоках и ресурсов системы.
Для моделирования производственных процессов используются машинные модели двух видов: аналоговые и дискретные.
Аналоговые модели – это, как правило, модели процессов систем в виде обыкновенных дифференциальных уравнений и уравнений в частных производных, решаемые на аналоговых и цифровых вычислительных машинах.
Дискретные модели, т.е. модели с развитой системой логических переходов и условий, описываемой с помощью аппарата дискретной математики (математическая логика и теория алгоритмов, теория языков и языковых процессоров, алгебраические системы и др.), решаются с помощью цифровых вычислительных машин.
Существуют также модели процессов систем, ориентированные на решение с помощью аналогово-цифровых комплексов. В большинстве случаев модели процессов производственной системы являются непрерывно-дискретными.
Для решения задач моделирования производственных процессов в процессе инженеринга эффективными являются имитирующие модели. Для этих моделей не ставится задача наибольшего соответствия структуры модели структуре моделируемого процесса. Основная задача – наиболее достоверное воспроизведение реакции моделируемой системы на внешние, в том числе и на входные воздействия в виде изменений характеристик преобразуемого системой ресурса. Подбор совокупности операторов преобразования входной информации в выходную информацию производится с помощью статистических математических методов.
Модель процесса структурируется в виде блоков в соответствии с достоверными представлениями о структуре производственной системы. Каждый блок модели имитирует поведение определенной системы, являющейся подсистемой исследуемой производственной системы. Имитирующие модели позволяют корректировать набор операторов преобразования в соответствии с текущим поведением моделируемой системы, создавать имитационные и деловые игры для принятия решений по проектированию, управлению, развитию производственных систем.